Alviium MIPI CSI-2 Cameras

Adapter Board for NVIDIA Jetson Nano and Jetson Xavier NX Developer Kit

User Guide
This document at a glance

Read this document carefully
Learn to use adapter boards in the most safe and efficient way and avoid damage to your embedded system.

Shipping contents
The delivery consists of:
• Adapter board for NVIDIA Jetson Nano and Jetson Xavier NX Developer Kit
• Flat flexible cable (FCC) to connect the adapter board to the embedded board.

Flexible printed circuit (FPC) cable is not included
The FPC cable to connect the adapter board to the camera is not included.

What else do you need?

Technical information and ordering of Allied Vision products
• For all information about Alvium CSI-2 cameras and accessories, see www.alliedvision.com/en/support/technical-documentation/alvium-csi-2-documentation.
• Please contact your Allied Vision Sales representative for ordering and for additional information on hardware options for Alvium cameras.

Technical information on NVIDIA Jetson embedded boards
For information on NVIDIA Jetson embedded boards, see www.nvidia.com/en-us/autonomous-machines/embedded-systems.
Contact us

Website, email

General
www.alliedvision.com/en/contact
info@alliedvision.com

Distribution partners
www.alliedvision.com/en/avt-locations/avt-distributors

Support
www.alliedvision.com/en/support

Offices

Europe, Middle East, and Africa
(Headquarters)
Allied Vision Technologies GmbH
Taschenweg 2a
07646 Stadtroda, Germany
T// +49 36428 677-0 (Reception)
T// +49 36428 677-230 (Sales)
F// +49 36428 677-28

Asia-Pacific
China
Allied Vision Technologies (Shanghai) Co., Ltd.
2-2109 Hongwell Int. Plaza
1602# ZhongShanXi Road
Shanghai 200235, China
T// +86 21 64861133

Singapore
Allied Vision Technologies Asia Pte. Ltd
82 Playfair Rd, #07-02 D'Lithium
Singapore 368001
T// +65 6634 9027

North, Central, and South America
Canada
Allied Vision Technologies Canada Inc.
300 – 4621 Canada Way
Burnaby, BC V5G 4X8, Canada
T// +1 604 875 8855

USA
Allied Vision Technologies, Inc.
102 Pickering Way- Suite 502
Exton, PA 19341, USA
Toll-free// +1-877-USA-1394
T// +1 978 225 2030
Connecting USB power ... 27
Connecting the I/Os .. 28
Document history and conventions

This chapter includes:

- Document history ... 7
- Conventions used in this user guide 7
- Component naming ... 8
Document history

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.0.5</td>
<td>2021-Dec-01</td>
<td>• Added notes about housings to avoid injuries by heat.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added contents about PCB and PCBA number on page 16.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Applied editorial changes.</td>
</tr>
<tr>
<td>V1.0.4</td>
<td>2021-Aug-11</td>
<td>• Added NVIDIA Jetson Nano 2GB Developer Kit as supported embedded board.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Applied editorial changes.</td>
</tr>
<tr>
<td>V1.0.3</td>
<td>2020-Sep-02</td>
<td>Added information on I/O specifications in I/O connections on page 20 and on connecting I/Os in Connecting the I/Os on page 28.</td>
</tr>
<tr>
<td>V1.0.2</td>
<td>2020-Jul-08</td>
<td>Added the NVIDIA Jetson Xavier NX Developer Kit as supported boards.</td>
</tr>
<tr>
<td>V1.0.1</td>
<td>2020-May-06</td>
<td>• Added the diameter for the mounting holes of the adapter board.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Applied editorial changes.</td>
</tr>
<tr>
<td>V1.0.0</td>
<td>2019-Nov-21</td>
<td>Release version</td>
</tr>
</tbody>
</table>

Table 1: Document history

Conventions used in this user guide

To give this user guide an easily understood layout and to emphasize important information, the following typographical styles and symbols are used:

Typographical styles

<table>
<thead>
<tr>
<th>Style</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emphasis</td>
<td>Highlighting important things</td>
</tr>
<tr>
<td>Web links and references</td>
<td>Links to webpages and internal cross references</td>
</tr>
</tbody>
</table>

Table 2: Typographical styles

Symbols and notes

CAUTION

Risk of burns
Precautions are described
Component naming

Components described in this user guide are not defined by common standards. Therefore, naming must be accurate to avoid misconceptions. Because naming is lengthy, reading is difficult. Simplified terms are used in this document.

<table>
<thead>
<tr>
<th>Long version</th>
<th>Short version used in this document</th>
<th>Alvium CSI-2 Cameras Safety and Usage Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapter Board for NVIDIA Jetson Nano and Jetson Xavier NX Developer Kit</td>
<td>adapter for Jetson Nano</td>
<td>Not applicable</td>
</tr>
<tr>
<td>MIPI CSI-2¹ adapter board</td>
<td>adapter board</td>
<td>embedded board adapter</td>
</tr>
<tr>
<td>MIPI CSI-2 FFC (flat flexible cable)</td>
<td>FFC</td>
<td>Not applicable</td>
</tr>
<tr>
<td>MIPI CSI-2 FPC (flexible printed circuit) cable</td>
<td>FPC cable</td>
<td>FPC cable</td>
</tr>
</tbody>
</table>

¹MIPI CSI-2 Mobile Industry Processor Interface Camera Serial Interface 2

Table 3: MIPI CSI-2 adapter board naming
Compliance, safety, and intended use

This chapter includes:

- Compliance notifications .. 10
- Intended use ... 10
- Copyright and trademarks .. 10
- Your safety ... 11
- Product safety ... 11
Compliance notifications

Intended use

Allied Vision’s objective is the development, design, production, maintenance, servicing and distribution of digital cameras and components for image processing. We are offering standard products as well as customized solutions.

Intended use of Allied Vision product is the integration into Vision systems by professionals. All Allied Vision product is sold in a B2B setting.

Allied Vision isn’t a legal manufacturer of medical product. Instead, Allied Vision cameras and accessories may be used as components for medical product after design-in by the medical device manufacturer and based on a quality assurance agreement (QAA) between Allied Vision (supplier) and medical device manufacturer (customer). Allied Vision’s duties in that respect are defined by ISO 13485, clause 7.2 (customer-related processes, equivalent to ISO 9001, clause 8.2).

Copyright and trademarks

All text, pictures, and graphics are protected by copyright and other laws protecting intellectual property. All content is subject to change without notice. All trademarks, logos, and brands cited in this document are property and/or copyright material of their respective owners. Use of these trademarks, logos, and brands does not imply endorsement.

Copyright © 2021 Allied Vision Technologies GmbH. All rights reserved.
Your safety

This section informs about issues related to your personal safety. Descriptions explain how to avoid hazards and use adapter boards safely.

Handling hot adapter boards

Electrical components of adapter boards get hot during operation.
Before operation, include adapter boards in housings that disable any contact to hot components.

Product safety

To prevent material damage, read the following to understand risks in using adapter boards.

Embedded systems

Setup and operation of Alvium CSI-2 cameras in embedded systems is different than for cameras in PC-based systems. Components can easily be damaged. If you are unfamiliar with embedded systems, be extremely careful. Follow the instructions in the Alvium CSI-2 Cameras User Guide.

Electrical connections

The MIPI CSI-2 standard does not specify electrical connections as extensively as the USB or GigE standard. Read specifications carefully. Alvium CSI-2 cameras are not protected against damage caused by reverse polarity.

Electrostatic discharge (ESD)

Electrostatic discharge (ESD) is dangerous for electronic devices, especially when tools or hands get in contact with connectors. We recommend measures to avoid damage by ESD:

• Unpacking: Remove the adapter board from its anti-static packaging only when your body is grounded.
• Workplace: Use a static-safe workplace with static-dissipative mat and air ionization.
• Wrist strap: Wear a static-dissipative wrist strap to ground your body.
• Clothing: Wear ESD-protective clothing. Keep components away from your body and clothing. Even if you are wearing a wrist strap, your body is grounded but your clothes are not.
• Housing: use an ESD protective housing, including the camera, embedded board, adapter board, and FPC cable.

Camera power

Operating cameras beyond the specified range damages cameras. Cameras are powered using the FPC connector at a maximum input of 5.5 VDC, using a limited power source (LPS), according to IEC62368-1: 2014 (Second Edition) with maximum 1.5 A per camera. Cameras are not intended to be connected to DC distribution networks.

We recommend you to power cameras with USB 2.0 Micro B power supplies providing 4.5 to 5.5 VDC at 1.5 A.

FPC connectors

Hirose FH55-22S-0.5SH FPC connectors enable compact camera design. The small-sized connectors are sensitive to mechanical stress and are specified for maximum 20 mating and unmating cycles. Especially if you are inexperienced with this connector, be very cautious. If the FPC connector is broken, the complete device must be replaced. Follow the instructions in Using the adapter board on page 21 carefully.

• Avoid stress to FPC connectors.
• Allow only the FPC cable to touch conductors.

Additional information

For technical data and more instructions on the Hirose FH55-22S-0.5SH connector, see the manufacturer data sheet at www.hirose.com.

Handling the actuator

• Move the actuator only between 0° (locked position) to 105° (open position).
• Carefully flip the actuator at the middle with your finger nail, see Connecting FPC cables to Hirose FPC connectors on page 22.
MIPI CSI-2 FPC cables

Manufacturing FPC cables or embedded boards
If you want to design your own components to connect Alvium CSI-2 cameras to embedded boards, contact your Allied Vision Sales representative or visit www.alliedvision.com/en/about-us/contact-us/technical-support-repair-/rma.

FPC cable position
Short circuits of the FPC cable can damage the camera or connected hardware.
• Insert the FPC cable into the connector with cable guiding tabs matching the connector’s side guides. See Connecting FPC cables to Hirose FPC connectors on page 22.
• Connect the camera and the embedded board (adapter) only as shown by the arrow printed on the FPC cable, see Connecting FPC cables to Hirose FPC connectors on page 22.

FPC cables and stress
Over-stressed FPC cables can damage the camera and connected hardware. When camera and embedded board are twisted against each other or pulled apart from each other with too much force, the FPC cable is over-stressed. Spring contacts of FPC connectors are worn out, causing short circuits and unreliable electrical connections.
• Insert the FPC cable into the FPC connector at 12° to the PCB board surface. See Connecting FPC cables to Hirose FPC connectors on page 22.
• Allow only slight bending of the FPC cable (minimum bending radius: 10 mm).
• For strain relief, we recommend you to mount the embedded board, adapter board, and camera to a common base.

No hot-plugging for MIPI CSI-2
Alvium CSI-2 cameras do not support hot-plugging. Hot-plugging can destroy the camera and connected hardware by high inrush current.
• Disconnect power supplies before connecting FPC cables.

FPC cable signal quality
Noise and electromagnetic interference can disable camera functions.
• Avoid contact to metal surfaces, causing electromagnetic interference.
• Please use cables recommended by Allied Vision.

FFCs and FFC connectors
Treat FFCs and FFC connectors as carefully as FPC connectors to avoid damage to adapter boards and embedded boards.
For details on FFC connectors, see the embedded board’s technical manual.
I/O connections

Through the adapter board, the camera connects to the embedded board. To reduce signal latencies, I/O cables can be connected directly to the adapter board. This includes soldering.

- Do soldering only if you have sufficient working knowledge.
- Follow the instructions in Connecting the I/Os on page 28.
This chapter includes:

Specifications ... 16
Dimensions and PCB layout ... 17
Electronic schematics ... 18
Camera power ... 20
I/O connections ... 20
Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product code</td>
<td>14918</td>
</tr>
<tr>
<td>PCB number</td>
<td>14383 (see PCB and PCBA number below)</td>
</tr>
<tr>
<td>PCBA number</td>
<td>14384 (see PCB and PCBA number below)</td>
</tr>
<tr>
<td>Dimensions (Length × width × height [mm])</td>
<td>36.6 × 24 × 9.3</td>
</tr>
<tr>
<td>Mass (adapter board only)</td>
<td>4 g</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-10 °C to +70 °C ambient temperature</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>+5 °C to +65 °C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>0% to 80% (non-condensing)</td>
</tr>
</tbody>
</table>
| Supported embedded boards | • NVIDIA Jetson Nano Developer Kit
• NVIDIA Jetson Nano 2GB Developer Kit
• NVIDIA Jetson Xavier NX Developer Kit
• All Raspberry Pi type 15-pin CSI-2 compatible boards (not tested, no driver available) |
| FFC (included in delivery) | Würth 686615100001 WR-FFC 15-pin, 1.0 mm pitch flat flexible cable type 1 (contacts on same side), length 100 mm |
| Supported cameras | Alvium CSI-2 cameras |
| Supported FPC cables for camera connections | Allied Vision 12316, 12317, 12318 |

Table 4: Adapter for Jetson Nano specifications

PCB and PCBA number

The PCB number is printed to the backside, the PCBA number is placed anywhere on the circuit board, for example, like this:

Figure 2: PCB and PCBA number on the adapter board
Dimensions and PCB layout

Figure 3: Adapter for Jetson Nano dimensions and PCB layout
Electronic schematics

To Alvium cameras

To Jetson Nano

I2C

Note:
J3 is not equipped.

GPIOs

Note:
J2 is not equipped.

Figure 4: Adapter for Jetson Nano electronic schematics, part 1
External power

![VCC-EXT-IN: DCIN 4V5 ... 5V5, max. 1.5 A](image)

External power

Note:

J4 is not equipped.

![3.3V -> 1.8V](image)

NOTICE

Damage to the camera power supply

- We recommend you to power Alvium cameras using the USB connector J5.
- Ensure the power supply provides sufficient current for the connected camera.

GPIO levelshifter 1V8 <-> 3V3

GND <-> Chassis-GND

Holes on Nano board are connected to GND

Figure 5: Adapter for Jetson Nano electronic schematics, part 2
Camera power

NOTICE

Damage to power supplies

If power supplies do not provide sufficient current, they may be damaged.
Ensure USB power supplies provide 1.5 A.

Power Alvium cameras using the USB 2.0 Micro B receptacle (JS). See the description in Figure 5, Adapter for Jetson Nano electronic schematics, part 2 on page 19.

I/O connections

You can use the I/O lines to trigger the camera or to output a signal from the camera to trigger a device, such as a strobe light to control illumination. Through the adapter board, the camera connects to the embedded board:

<table>
<thead>
<tr>
<th>Camera line</th>
<th>Embedded board line</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT-GPIO2</td>
<td>CAM0_PWDN</td>
</tr>
<tr>
<td>EXT-GPIO3</td>
<td>CAM0_MCLK</td>
</tr>
</tbody>
</table>

Table 5: I/O connections from the camera to the embedded board

If you want to reduce signal latencies, such as for triggering the camera by a light barrier, you can connect I/O cables directly to the adapter board. Please see the instructions in Connecting the I/Os on page 28.
Using the adapter board

This chapter includes:

- Embedded system accessories ... 22
- Connecting FPC cables to Hirose FPC connectors 22
- Installing adapter boards .. 24
Embedded system accessories

FPC cables
For more information, see the Alvium Cameras Accessory Guide at www.alliedvision.com/en/support/technical-documentation/alvium-csi-2-documentation.

Designing your own embedded components
If you want to design your own components to connect Alvium CSI-2 cameras to embedded boards, contact your Allied Vision Sales representative or visit www.alliedvision.com/en/about-us/contact-us/technical-support-repair/-rma.

Proper usage of the Hirose FH55-22S-0.5SH FPC connector is vital for connecting Alvium CSI-2 cameras to embedded boards. Therefore, instructions start with usage of the FPC connector. Afterwards, setting up the adapter boards is described.

Connecting FPC cables to Hirose FPC connectors

Figure 6 shows how the FPC cable connects to the FPC connector. Follow the instructions to connect the FPC cable to the camera and to the embedded board.

1. Opening the FPC connector:
 With your fingernail*, flip the actuator to open position at 105° to the PCB surface, see Figure 7.

 *Or use a plastic tool, as metal tools can damage the actuator.
NOTICE

Damage to the camera by reverse polarity

If Alvium CSI-2 cameras are powered with reverse polarity, camera electronics is damaged.

- Before connecting camera power and I/O power, carefully read the Alvium Cameras User Guide for the FPC connector pin assignment.
- Connect the cable as shown in this section.

2. **Ensuring proper cable direction between host and camera**, take the FPC cable with conductors facing the FPC connector conductors (see Figure 9).

3. Inserting the FPC cable:
 At a horizontal angle of 90° to the connector’s rear (see Figure 9) and at a vertical angle of 12° to the PCB (see Figure 10), slowly insert the FPC cable into the actuator...

4. ...until cable guiding tabs are caught between connector rear and side guides (see Figure 9). Pull the cable slightly to ensure guiding tabs are properly engaged.

5. Holding the FPC cable in position, flap down the actuator to closed position (see Figure 10).
Installing adapter boards

CAUTION
Burns to the skin
Electrical components get hot during operation.
- Before operation, include adapter boards in housings that disable any contact to hot components.

NOTICE
Damage to electronics
- Disconnect all power supplies before installing the adapter board to your embedded board.
- Reconnect power only after installation is complete.
- Mount the embedded board, adapter board, and camera on a common base for strain relief.

NVIDIA Jetson Nano and Jetson Xavier NX Developer Kit Manual
Connecting the FFC

1. With the conductors (a) facing the center of the adapter board,...

Figure 11: Inserting the FFC

...connect the FFC to the embedded board connector (b) of the adapter board.

Figure 12: Embedded board connector of the adapter board
Connecting the embedded board

1. With the conductors (c) facing the center of the embedded board,...

![Figure 13: Inserting the FFC](image)

...connect the FFC to the camera connector of the embedded board.

Connecting the camera

1. Following the instructions in [Connecting FPC cables to Hirose FPC connectors](#) on page 22, connect the FPC cable to the FPC camera connector (d).
2. Connect the other end of the FPC cable to the camera.

![Figure 14: FPC camera connectors of the adapter board](image)

Your Alvium CSI-2 camera is connected to the embedded board.
Connecting USB power

We recommend you to power the camera using USB power.

NOTICE

Damage to power supplies

If power supplies do not provide sufficient current, they may be damaged.
Ensure USB power supplies provide 1.5 A.

1. Ensure the USB power supply is disconnected from the mains power.
2. Connect the power supply’s output connector to the USB 2.0 Micro B receptacle (e).

3. Connect the power supply to the mains power.
4. Power and boot the embedded board.

Your Alvium CSI-2 camera can be operated via the embedded board.
Connecting the I/Os

If you want to use the I/O lines of the embedded board, see I/O connections on page 20. This way, you can use the I/Os immediately.

If you want to use the I/O lines of the adapter board, see the following instruction. This way, you reduce signal latencies, such as for triggering the camera by a light barrier.

About this instruction

This is a best-practice solution. Please visit www.alliedvision.com/en/about-us/contact-us/technical-support-repair/-rma if you have any questions.

Damage to the adapter board

Improper soldering can cause copper pads to come loose from the PCB. To ensure soldering does not damage the adapter board:

- Keep soldering temperature low.
- Allow only short contact time between the soldering tip and the PCB.
- Use only minimal force to desolder the resistors.

1. Desolder the resistors R3 (f) and R6 (g).
2. Solder a pin header (h) to J2.

Figure 16: Desoldering resistors and soldering a pin header
3. Connect GND to pin 2 (i) on connector J4.

4. On the pin header (h), use the I/O pins defined in I/O signal levels and description on page 30.
I/O signal levels and description

Table 6 displays the signals for the GPIOs on connector J2, for GND on connector J4, and for VCC-EXT-IN on the USB connector J5.

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin</th>
<th>Signal</th>
<th>< - ></th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J2</td>
<td>1</td>
<td>EXT-GPIO2</td>
<td>IN/OUT</td>
<td>U(_{\text{in}}) (low) = -0.3 to 0.8 VDC</td>
<td>GPIO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U(_{\text{in}}) (high) = 2.0 to 5.5 VDC</td>
<td>Internal pull-up resistor: 33 kΩ to 63 kΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U(_{\text{out}}) (low) = 0 to 0.4 VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U(_{\text{out}}) (high) = 2.4 to 3.3 VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>at max. 12 mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>CAM0_PWDN</td>
<td>IN/OUT</td>
<td>U(_{\text{in}}) (low) = 0 to 1.2(^1) VDC</td>
<td>GPIO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U(_{\text{in}}) (high) = 2.2(^1) to 5.5 VDC</td>
<td>Keep external pull-up or pull-down resistor above 50 kΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U(_{\text{out}}) (low) = 0 to 0.4 VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U(_{\text{out}}) (high) = 2.9(^1) to 3.3(^1) VDC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>at max. 50 mA</td>
<td></td>
</tr>
<tr>
<td>J2</td>
<td>3</td>
<td>EXT-GPIO3</td>
<td></td>
<td>See EXT-GPIO2</td>
<td></td>
</tr>
<tr>
<td>J2</td>
<td>4</td>
<td>CAM0_MCLK</td>
<td></td>
<td>See CAM0_PWDN</td>
<td></td>
</tr>
<tr>
<td>J4</td>
<td>1</td>
<td>VCC-EXT-IN</td>
<td>PWR IN</td>
<td>4.5 to 5.5 VDC</td>
<td>Connects to J5, pin 1</td>
</tr>
<tr>
<td>J4</td>
<td>2</td>
<td>GND</td>
<td>PWR</td>
<td>0 VDC</td>
<td>Power supply ground</td>
</tr>
<tr>
<td>J5</td>
<td>1</td>
<td>VCC-EXT-IN</td>
<td>PWR IN</td>
<td>4.5 to 5.5 VDC</td>
<td>USB power supply</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maximum input current: 1.5 A</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Depends on the 3.3 VDC output voltage of the embedded board

Table 6: I/O connections from the adapter board to the camera