

 TECHNICAL PAPER

Using Counters and Timers with
Alvium Cameras

V1.0.0 1

V1.0.0
Sept 2023

Scope of this document
This document provides an overview of Counter and Timer functionalities with Alvium cameras and
Vimba X. For an easy start, Vimba X Viewer provides presets for PWM (Pulse Width Modulation) and a
Counter on Line0.

Note: Counters and Timers are unavailable if an Alvium CSI-2 camera is used with V4L2.

Use cases
Use cases for counters and timers described in this document:

• PWM (Pulse Width Modulation), see code snippet on page 3
• A pulse synchronized with a frame using auto exposure, see page 7
• Triggering multiple frames during a Timer signal, see page 12

Use cases for counters and timers available as preset in Vimba X Viewer:

• Pulse Width Modulation with 1 kHz and 50% Duty Cycle:
• Counter IO Line0, counts RisingEdge occurrences on Line0

Other typical use cases for counters and timers in machine vision and embedded vision applications:

• Delayed triggering of external devices such as another camera or a strobe.
• Image acquisition, triggered through a timer, e.g., every 30 seconds.
• Tracking how often a device was triggered.
• … and more.

Counters and Timers in Alvium cameras
Alvium cameras with GenAPI support are equipped with four Counters. For each Counter, the user can
choose between 14 possible Counter Event Sources. The two Timers can be triggered by one of 14
different sources. For details, see the Alvium Features Reference.

https://cdn.alliedvision.com/fileadmin/content/documents/products/cameras/various/features/Alvium_Features_Reference.pdf

V1.0.0 2

The I/O Mode of the four available lines can be switched, so that most of them can serve as input or
output (depending on the camera interface).

Getting started with Counters and Timers
Prerequisites
For an easy start with Counters and Timers, you need:

• Alvium GigE, USB, or 1800-C cameras with firmware 11.xx or higher with counter and timer
features

• Vimba X SDK
• Optional: Cable for triggering external devices such as a strobe

Get started with Vimba X Viewer
Step 1: Get your camera up and running

• Check the firmware version with Vimba X Firmware Updater or Vimba X Viewer. If a newer
firmware is available, update it. We recommend using the latest firmware.

• Start Vimba X Viewer, acquire some images, and apply the basic camera settings for your
application such as the exposure time. GigE cameras: For best performance, follow the
instructions of the user guide, chapter Configuring the host computer.

Step 2: Explore the presets for Counter and Timer

On the Trigger IO tab, select Open dialog .

On the Advanced Trigger dialog (not available for CSI-2, please use the All tab), select the PWM preset
or the Counter IO preset. Please note that PWM is not a specific camera feature, but a special
configuration of the Timer, where falling edge of the same timer is used as trigger activation. You can

https://www.alliedvision.com/en/products/software/vimba-x-sdk
https://www.alliedvision.com/en/support/firmware-downloads/

V1.0.0 3

use the Advanced Trigger IO dialog to activate PWM.

To see feature descriptions as you hover, select Tooltips on.

Or skip the presets and proceed with the next step.

Step 3: Adjust the settings
Expand the Counter and Timer section, try the preset, and adapt the settings according to your use case.

Get started with programming
On the following pages, you can find an example for configuring a Timer with PWM output and a
Counter for this signal.

To simplify the example, no image acquisition is included and only limited error handling is done.

Examples including images acquisition and error handling come with the Vimba X SDK.

V1.0.0 4

 // Configure a Timer with PWM output and a Counter for this signal

#include <iostream>

#include "VmbCPP/VmbCPP.h"

using namespace VmbCPP;

int main() {

 VmbSystem& system = VmbSystem::GetInstance();

 if (VmbErrorSuccess == system.Startup())

 {

 CameraPtrVector cameras;

 if (VmbErrorSuccess == system.GetCameras(cameras))

 {

 CameraPtr camera = cameras[0];

 if (VmbErrorSuccess == camera->Open(VmbAccessModeFull))

 {

 std::cout << "Camera is configured..." << std::endl;

 // Set up Timer features

 double timerDuration = 5000;

 double timerDelay = 5000;

 FeaturePtr pfeature;

 camera->GetFeatureByName("TimerSelector", pfeature);

 pfeature->SetValue("Timer0"); // Select Timer0

 camera->GetFeatureByName("TimerTriggerSource", pfeature);

 pfeature->SetValue("Timer0Active");

 camera->GetFeatureByName("TimerTriggerActivation", pfeature);

 pfeature->SetValue("FallingEdge"); // For PWM generation, Timer gets triggered with
 falling edge from itself.

 camera->GetFeatureByName("TimerDuration", pfeature);

 pfeature->SetValue(timerDuration);

 camera->GetFeatureByName("TimerDelay", pfeature);

 pfeature->SetValue(timerDelay); // 100Hz 50% Duyty Cycle

 // Set up signal on I/O Line0

 camera->GetFeatureByName("LineSelector", pfeature);

 pfeature->SetValue("Line0"); // Select Line0

 camera->GetFeatureByName("LineMode", pfeature);

 pfeature->SetValue("Output");

 camera->GetFeatureByName("LineSource", pfeature);

 pfeature->SetValue("Timer0Active"); // Output Timer0 signal

V1.0.0 5

 // Set up Counter features

 int counterDuration = 10000;

 camera->GetFeatureByName("CounterSelector", pfeature);

 pfeature->SetValue("Counter0");

 camera->GetFeatureByName("CounterEventSource", pfeature);

 pfeature->SetValue("Timer0Active"); // Line0 can be counted even if it is output

 camera->GetFeatureByName("CounterEventActivation", pfeature);

 pfeature->SetValue("RisingEdge");

 camera->GetFeatureByName("CounterTriggerSource", pfeature);

 pfeature->SetValue("Off"); // If Off, reset feature starts the counter

 camera->GetFeatureByName("CounterDuration", pfeature);

 pfeature->SetValue(counterDuration); // Counter will end at this. Value must be set!

 camera->GetFeatureByName("CounterReset", pfeature);

 pfeature->RunCommand(); // Start counter

 camera->GetFeatureByName("TimerReset", pfeature);

 pfeature->RunCommand(); // Start PWM Signal

V1.0.0 6

 // Output counter Values

 std::cout << "Camera runs PWM on Timer0. It can be measured on Line0 and rising edges of the PWM
 Signal are counted."<< std::endl;

 std::cout << "Camera will stop counting at: " <<counterDuration << std::endl;

 std::cout << "Press 's' to show counter value." << std::endl;

 std::cout << "Press 'r' to reset counter." << std::endl;

 std::cout << "Press 'q' to leave." << std::endl;

 std::string input;

 VmbInt64_t counterValue;

 while (true) {

 std::getline(std::cin, input);

 if (input == "s") {

 camera->GetFeatureByName("CounterValue", pfeature);

 pfeature->GetValue(counterValue);

 std::cout << "Counter value: " << counterValue << std::endl;

 }

 if (input == "r") {

 camera->GetFeatureByName("CounterReset", pfeature);

 pfeature->RunCommand(); // Start counter

 camera->GetFeatureByName("CounterValueAtReset", pfeature);

 pfeature->GetValue(counterValue);

 std::cout << "Counter value at reset: " << counterValue << std::endl;

 }

 if (input == "q") {

 break;

 }

 }

 }

 camera->Close();

 }

 }

 system.Shutdown();

 return 0;

}

V1.0.0 7

Use case: Pulse synchronized with a frame
In this use case, we have one pulse per second and simultaneuously an image with auto exposure.

Tip:

Auto exposure works best if it updates often, so acquiring with just 1 fps is not recommended. In this
concrete example, the camera (an Alvium U-1236) runs at its free-run rate, which is approximately
15.7 fps. Of course other frame rates work as well, if you have a different camera model.

Only the image synchronized to the pulse is used, the other images are ignored.

Method A: Using Timer0 and Timer1

1 Timer0 enables frames to be produced while it is active. The first frame is started at rising edge of
Timer0. Timer0 has a loop time of 1 s (to an accuracy of +/- 100 ns, roughly).

2 The width of ExposureActive changes because auto exposure is on and light conditions vary.

3 Timer1 outputs a 20 ms pulse at rising edge of Timer0. If the rising edge of Timer0 is used, this is
optional in most cases.

Tip:

Timer0 ‘off’ time (Timer0Delay) should be roughly one frame time to ensure that there is
synchronisation between the first frame and the rising edge of Timer0. This may need to be tweaked
for a different camera, it just needs to be long enough to prevent a new frame occurring too close to
the rising edge of Timer0.

In general, if your frame rate is NN.FFF frames/s, then (0.FFF * Frame time) gives a first pass at the
Timer0 ‘off’ (Timer0Delay) time. You may need to make it a little longer to prevent errors.

V1.0.0 8

Timer settings of this example (please change according to your camera and use case), changes from
default settings are highlighted:

V1.0.0 9

Make sure that the maximum exposure time in the Auto exposure settings prevent frames being
extended possibly affecting the overall timing. In this case, we used 55 ms:

Op�onally, you can set Timer1 to give a 20 ms pulse when Timer0 becomes ac�ve. Depending on
your hardware and use case, this may not always be needed.

Note that Trigger Delay = 1. This is needed, otherwise the trigger signal will miss the internal clock
transi�on.

V1.0.0 10

Method B: Using a Counter and a Timer

1 Counter0 enables frames to be produced while it is active. Counter0 starts to count at the rising
edge of Timer0Active and continues to count until it gets to 15. Once it gets to 15, it stops counting
and becomes inactive until the next rising edge of Timer0.

2 The width of ExposureActive changes because auto exposure is on and light conditions vary.

3 Timer0 is set to emit a 20 ms pulse every second. Timer0 has two roles. Firstly, to control Counter0
and secondly, to output one pulse per second. The length of this pulse is not critical but, as the falling
edge set Counter0 off, it should not be too long. If the frame rate is NN.FFF frames/s then it should be
shorter than (0.FFF * Frame time). In this case, at 15.7461 frames/s, it should be shorter than (0.7461
* 1/15.7461) s = 0.7461 * 0.0635 s = 47.4 ms

Note: The target for Counter0 needs to be set to the number of complete frames that the camera will
output a second. If the frame rate is NN.FFF frames/s, then NN is the target for the counter. In this
example, the frame rate is 15.7461 frames/s so 15 is Counter0’s target.

V1.0.0 11

Counter and Timer settings of this example (please change according to your camera and use case),
changes from default settings are highlighted:

Alternatively, you can set CounterTriggerActivation to RisingEdge (at the same time as
CounterResetActivation being set to RisingEdge).

Just like with Method A, make sure that the maximum exposure time in the Auto exposure settings
prevent frames being extended possibly affecting the overall timing. In this case, we used 55 ms:

V1.0.0 12

Use case: Triggering multiple frames during a Timer signal
Here you can see an example of how features are set when a random trigger signal is used to acquire
frames during a Timer signal. Please adapt the settings and values to your camera model and use case.

V1.0.0 13

	Scope of this document
	Use cases
	Counters and Timers in Alvium cameras
	Getting started with Counters and Timers
	Prerequisites
	Get started with Vimba X Viewer
	Get started with programming

