

Technical Manual

For CCD models with serial numbers: xx/yy-6zzzzzz V2.7.2 2018-Dec-14

<u>Allied Vision Technologies GmbH</u> Taschenweg 2a D-07646 Stadtroda / Germany

Contents

Contacting Allied Vision7
Introduction.8Document history.8Manual overview.16Conventions used in this manual.17Styles.17Symbols.17More information.18Before operation.18
Marlin cameras
Compliance and intended use21Compliance notifications.21For customers in Europe:21For customers in the USA22Avoid electromagnetic interferences22Camera applications and intended use23General use23Use in medical devices.23Copyright and trademarks23
Specifications
Marlin F-033B/C 25 Marlin F-046B/C 26 Marlin F-080B/C (-30 fps*) 27 Marlin F-145B2/C2 28 Marlin F-146B/C 29 Marlin F-201B/C 30 Spectral sensitivity 31
Camera dimensions
Marlin standard housing
Filter and lenses
Camera interfaces
IEEE 1394a port pin assignment

Contents

Status LED green	
Status LED yellow	
Control and video data signals	
Inputs	
Triggers	
Input/output pin control	
IO_INP_CTRL 1-2	
Trigger delay	
Outputs	
IO_OUTP_CTRL 1-2	
Output modes	
Pixel data	54
Description of the data path	57
Block diagrams of the cameras	57
Black and white cameras	
Color cameras	
White balance	
One-push white balance	
Auto white balance (AWB)	
Auto shutter	
Auto gain	
Manual gain	
Brightness (black level or offset)	
Look-up table (LUT) and gamma function	
Loading an LUT into the camera	
Shading correction	
How to store shading image	
Automatic generation of correction data Requirements	
Algorithm Loading a shading image out of the camera	
Loading a shading image out of the camera	
Horizontal mirror function	
Binning (only Marlin CCD b/w models)	
2 x binning	
Vertical binning	
Horizontal binning	
2 x full binning	
Sub-sampling (Marlin F-146C and Marlin F-201C)	
What is sub-sampling?	
Which Marlin models have sub-sampling?	
Description of sub-sampling	
Parameter update timing	
Sharpness	
Color interpolation and correction	
Color interpolation (BAYER demosaicing)	
Color correction	88

Marlin Technical Manual V.2.7.2

Why color correction	
Color correction in Allied Vision cameras	89
Color correction: formula	89
GretagMacbeth ColorChecker	89
Color conversion (RGB \rightarrow YUV)	90
Hue and saturation	90
Serial interface	91
Video formats, modes and bandwidth	96
Marlin F-033B/ Marlin F-033C	
Marlin F-046B/ Marlin F-046C	
Marlin F-080B/ Marlin F-080C (-30 fps)	
Marlin F-145B2/ Marlin F-145C2 1	
Marlin F-146B / Marlin F-146C 1	
Marlin F-201B / Marlin F-201C	
Area of interest (AOI)	
Autofunction AOI	
Frame rates	
Frame rates Format 7	
Marlin F-033: AOI frame rates	
Marlin F-046: AOI frame rates	
Marlin F-080: AOI frame rates 1	
Marlin F-080-30 fps: AOI frame rates 1	
Marlin F-145: AOI frame rates 1	
Marlin F-146: AOI frame rates 1	19
Marlin F-201: AOI frame rates 1	20
Controlling image capture1	121
Trigger modes	
Bulk trigger (Trigger_Mode_15) 1	
Trigger delay	
Trigger delay advanced register 1	
Exposure time (shutter) and offset 1	
Exposure time offset	28
Minimum exposure time 1	29
Example Marlin F-033 1	29
Extended shutter 1	130
One-shot	131
One-shot command on the bus to start of exposure 1	132
End of exposure to first packet on the bus 1	133
Multi-Shot 1	134
ISO_Enable / Free-Run 1	134
Asynchronous broadcast 1	134
Jitter at start of exposure	36
Frame memory and deferred image transport 1	
Deferred image transport 1	
HoldImg mode 1	138

Marlin Technical Manual V.2.7.2

FastCapture	139
Sequence mode	
How is sequence mode implemented?	
Points to pay attention to when working with a sequence	
Changing the parameters within a sequence	
Points to pay attention to when changing the parameters	
Secure image signature (SIS)	
SIS: Definition	
SIS: Scenarios	
515. Scenarios	145
How does bandwidth affect the frame rate?	146
Example formula for the b/w camera	146
Test images	147
Loading test images	
Test images b/w cameras	
Test images for color cameras	
YUV422 mode	
Mono8 (raw data)	
Configuration of the camera	149
Camera_Status_Register	149
Example	150
Sample program	151
Configuration ROM	151
Implemented registers (IIDC V1.3)	154
Camera initialize register	
Inquiry register for video format	
Inquiry register for video mode	
Inquiry register for video frame rate and base address	
Inquiry register for basic function	
Inquiry register for feature presence	
Inquiry register for feature elements	
Inquiry register for absolute value CSR offset address	
Status and control register for feature	
Feature control error status register	
Video mode control and status registers for Format_7	
Quadlet offset Format_7 Mode_0	
Quadlet offset Format_7 Mode_1	
Format_7 control and status register (CSR)	
Advanced features (Allied Vision-specific)	
Advanced registers summary	
Version information inquiry	
Advanced feature inquiry	
Maximum resolution	
Time base	
Extended shutter	
Test images	
Sequence control	

Look-up tables (LUT)	188
Shading correction	188
Deferred image transport	
Frame information	190
Input/output pin control	191
Delayed Integration Enable (IntEna)	
Auto shutter control	
Auto gain control	193
Autofunction AOI	193
Color correction	195
Trigger delay	195
Mirror image	196
Soft Reset	196
Secure image signature (SIS)	
Advanced register: time stamp	
Advanced register: frame counter	
Advanced register: trigger counter	
Where to find time stamp, frame counter and trigger counter in the image	
User profiles	
Error codes	
Reset of error codes	
Stored settings	
GPDATA_BUFFER	
Little endian vs. big endian byte order	205
Firmware update	206
Appendix	207
Sensor position accuracy of Marlin cameras	207
Index	208

Contacting Allied Vision

Contacting Allied Vision

Connect with Allied Vision colleagues by function: www.alliedvision.com/en/contact

Find an Allied Vision office or distributor: www.alliedvision.com/en/about-us/where-we-are.html

E-mail:

info@alliedvision.com (for commercial and general inquiries)
support@alliedvision.com (for technical assistance with Allied Vision products)

Sales offices: Europe, Middle East, and Africa: +49 36428-677-230 North, Central and South America: +1 877 USA-1394 Asia-Pacific: +65 6634-9027 China: +86 21 64861133

Headquarters:

Allied Vision Technologies GmbH Taschenweg 2a 07646 Stadtroda Germany

Tel: +49 36428 677-0 Fax: +49 36428 677-24

CEO/Geschäftsführer: Andreas Gerk

Registration Office: AG Jena HRB 208962 Tax ID: DE 184383113

Introduction

This **Marlin Technical Manual** describes in depth the technical specifications, dimensions, all camera features (IIDC standard and Allied Vision smart features) and their registers, trigger features, all video and color formats, bandwidth and frame rate calculation.

For information on hardware installation, safety warnings, pin assignments on I/O connectors and 1394b connectors read the **1394 Installation Manual**.

Please read through this manual carefully.

We assume that you have read already the **1394 Installation Manual** (see: http://www.alliedvision.com/en/support/technical-documentation) and that you have installed the hardware and software on your PC or laptop (FireWire card, cables).

Document history

Version	Date	Remarks	
V0.9	18.12.2003	First issue	
V0.91	09.01.2004	Typos corrected, minor changes, spectral sensitivity of IR cut fil- ter added	
V1.0	20.01.2004	Wording checked, Marlin W90/270 added	
V1.1	07.09.2004	Marlin F-131C added, added features to make manual compliant with firmware 2.05, wording checked, impulse diagrams cor- rected	
V1.2	08.10.2004	Manual compliant to firmware 2.06	
V1.3	23.02.2005	For MarlinS with serial numbers xx/yy-6zzzzzz	
V1.31	12.04.2005	Color: firmware 20050321, CMOS included	
V1.4	24.08.2005	Added Marlin F-146, all: class B compliant	
V2.0.0	10.03.2006	Added Marlin F-201, manual compliant to firmware 3.03, added features secure image signature (SIS) and user profiles, minor corrections	
V2.1.0	10.04.2006	Time stamp changed	
	to be continued on next page		

Table 1: Document history (Sheet 1 of 8)

Version	Date	Remarks
V2.2.0	26.02.2007	Minor corrections
		New formula for Marlin F-131 (Formula 11: Frame rate calcula- tion Marlin F-131 as function of AOI height and width on page 132)
		Marlin F-145C2: corrected resolutions, new color formats in For- mat_7 Mode_0 and Format_7 Mode_2 (Table 38: Video fixed for- mats Marlin F-145B2 / F-145C2 on page 100)
		Improved Chapter Secure image signature (SIS)
		Added exposure time formula for Trigger_Mode_1 Chapter Expo- sure time (shutter) and offset
		Firmware update note corrected (Chapter Firmware update)
		Added Mono16 modi (Chapter Video formats, modes and band-width)

Table 1: Document history (Sheet 2 of 8)

Version	Date	Remarks
V2.3.0	29.02.2008	Minor corrections Sensor tilting changed to sensor rotating in Chapter Camera dimensions Added detailed description of BRIGHTNESS (800h) in Table 86: Feature control register on page 172 Added detailed description of WHITE-BALANCE (80Ch) in Table 86: Feature control register on page 172 et seq. Added new Format7_Mode4 for Marlin F-131C in Table 47: Video fixed formats Marlin F-131B (NIR) on page 114 et seq. New sensor IBIS5B (Figure 14: Spectral sensitivity of Marlin F- 131B (with IBIS5B as standard) / Marlin F-131B NIR (with IBIS5B NIR as standard) without cut filter and optics on page 41, Figure 14: Spectral sensitivity of Marlin F-131B (with IBIS5B as standard) / Marlin F-131B NIR (with IBIS5B NIR as standard) without cut filter and optics on page 41) Corrected data path bandwidth (CCD: 12 bit, ADC: 10 bit) in Fig- ure 26: Block diagram b/w camera on page 57. Added Format_0 Mode_5 (640x480, Mono8) with 60 fps for Mar- lin F-046B and Marlin F-046C in Table 34: Video formats Marlin F- 046B / F-046C on page 98

Table 1: Document history (Sheet 3 of 8)

Version	Date	Remarks
V2.4.0	15.08.2008	Added Format_7 Mode_3 (full binning) in Table 8: Specification Marlin F-201B/C on page 30
		Corrected frame rate for Format_7 Mode_3 (full binning) in Table 42: Video fixed formats Marlin F-201B / F-201C on page 104
		Restructuring of Marlin Technical Manual:
		 Added <i>Contacting Allied Vision</i> on page 8 Added Chapter Manual overview
		• Restructured Chapter <i>Marlin types and highlights</i> to Chapter Marlin cameras .
		 Infos from Marlin camera types table moved to Chapter Specifications
		 Safety instructions moved to Hardware Installation Guide, Chapter Safety instructions and Allied Vision camera cleaning instructions
		 Environmental conditions moved to Marlin Instruction Leaflet
		 Infos on CS-/C-Mounting moved to Hardware Installa- tion Guide, Chapter Changing filters safety instructions
		 Infos on System components and Environmental condi- tions moved to Marlin Instruction Leaflet
		• Infos on <i>IR cut filter</i> and <i>Lenses</i> moved to Chapter Filter and lenses
		• Moved binning explanation from Chapter Specifications to Chapter Video formats, modes and bandwidth
		• Binning / sub-sampling modes and color modes are only listed in Chapter Video formats, modes and bandwidth

Table 1: Document history (Sheet 4 of 8)

Version	Date	Remarks
V2.4.0 [continued]	15.08.2008 [continued]	 Moved detailed description of the camera interfaces (Fire-Wire, I/O connector), ordering numbers and operating instructions to the <i>Hardware Installation Guide</i>. Revised Chapter Description of the data path Revised Chapter Controlling image capture ; added Table 55: Trigger modi on page 121 Revised Chapter Video formats, modes and bandwidth Revised Chapter How does bandwidth affect the frame rate? Revised Chapter Configuration of the camera Revised Chapter Firmware update Added Chapter Sensor position accuracy of Allied Vision cameras on page 238 Revised Chapter Index on page 239 Changed provisions directive to 2004/108/EG in Chapter Compli-
		ance and intended use New measurement of minimum exposure time and therefore also
		 new offset values: Table 61: Camera-specific exposure time offset on page 128 Table 62: Camera-specific minimum exposure time on page 129 Chapter Example Marlin F-033 Figure 61: Data flow and timing after end of exposure on page 133 Chapter Specifications Added cross-reference from upload LUT to GPDATA_BUFFER in
		Chapter Loading an LUT into the camera . Added cross-reference from upload/download shading image to GPDATA_BUFFER in:
		 Chapter Loading a shading image out of the camera Chapter Loading a shading image into the camera Corrected: b/w and color Marlin cameras have IR cut filter (except Marlin F-131BNIR: ASG) in Chapter Specifications

Table 1: Document history (Sheet 5 of 8)

Version	Date	Remarks
V2.4.0 [continued]	15.08.2008 [continued]	Added detailed level values of I/Os in Chapter Camera I/O connections .
		Added little endian vs. big endian byte order in Chapter GPDATA_BUFFER
		Added RoHS in Chapter Compliance and intended use
		Listed shutter speed with offset in Chapter Specifications
		New measurement of IntEna signals, therefore new offsets in Chapter Exposure time (shutter) and offset and in Figure 61: Data flow and timing after end of exposure on page 133.
		New photo of LED position in Figure 18: Position of Status LEDs on page 44
V2.5.0	23.02.2010	Revised advanced register 0xF1000290 (DSNU_CONTROL) in Table 103: Advanced register: DSNU on page 192
		All advanced registers in 8-digit format beginning with 0xF1 in Chapter Advanced features (Allied Vision-specific)
		Firing a new trigger while IntEna is still active can result in miss- ing image (not image corruption): see Caution on page 53.
		Revised chapter Chapter White balance
		Calculated effective chip size for all sensors (with resolution of Format_7 Mode_0) in Chapter Specifications
		Corrected drawing in Figure 70: Delayed integration timing on page 192
		Revised chapter Spectral sensitivity on page 31 (NIR only with b/ w camera)
		Added Marlin F-146C Format_0 Mode_5 Mono8 in Table 40: Video fixed formats Marlin F-146B / F-146C on page 102.
		Revised Chapter Compliance and intended use .
		Corrected: Marlin F-131B/C and Marlin F-131B NIR: power only via 1394 cable (not via 12-pin HIROSE): Table 9: Specification Marlin F-131B (b/w also: NIR) on page 30
		Corrected: Misc. Features to Mirror image in bit [15] on page 182

Table 1: Document history (Sheet 6 of 8)

Version	Date	Remarks
V2.5.0	23.02.2010	[continued]
[continued]	[continued]	Discontinuation of Marlin F-131C:
[continuea]		 Chapter Spectral sensitivity Note on page 83 Chapter Sub-sampling (Marlin F-146C and Marlin F-201C) Chapter Area of interest (AOI) Table 89: Advanced registers summary on page 177 Table 91: Camera type ID list on page 180 Table 92: Advanced register: Advanced feature inquiry on page 182 Chapter High dynamic range mode (Marlin F-131B only)
		New storage temperature:
		 70 °C, see Chapter Specifications on page 70
		New links to Allied Vision website
		• Chapter Contacting Allied Vision on page 7 and many others
		New measured sensitivity curves:
		Chapter Spectral sensitivity
V2.6.0	09.08.2010	Some smaller corrections:
		 Corrected availability of some video fixed formats, see Table 36: Video fixed formats Marlin F-080B / F-080C (-30 fps) on page 99 Corrected trigger diagram (starting of Busy signal), see Figure 21: Output Impulse Diagram on page 53
		File format:
		Converted FrameMaker files from FM7 to FM9
		New layout for AOI Diagrams:
		• All AOI diagrams have now the same new layout, see Chap- ter Marlin F-080-30 fps: AOI frame rates and the following chapters

Table 1: Document history (Sheet 7 of 8)

Version	Date	Remarks
V2.7.0	09.03.2015	Updated data:
		 Corrected hyperlinks to targets on the Allied Vision website Added information that all color modes in Chapter Specifications on page 24 comply with the IIDC specifications Corrected information in Chapter Sensor position accuracy of Marlin cameras on page 207 Adapted addresses in Chapter Contacting Allied Vision on page 7 Corrected information for binning in Chapter Definition on page 81 Partly update of sensor curves in Chapter Spectral sensitivity on page 31.
		Layout changes due to a changed Corporate identity:
		 Replaced the previous Allied Vision logo by the current one Reworded all appropriate contents from AVT and Allied Vision Technologies to Allied Vision
V2.7.1	12.01.2018	Updated data:
		 Added a note about Hirose I/O connectors in Chapter Camera I/O connections on page 43 Updated note about accuracy of measurements for quantum efficiency. Removed discontinued Marlin 131B/C models and related descriptions. Removed housing variants with angled heads. Removed CS-Mount option. Removed information on optional accessories. Applied minor changes.
V2.7.2	14.12.2018	Updated data:
		Minor changesCorrected typos

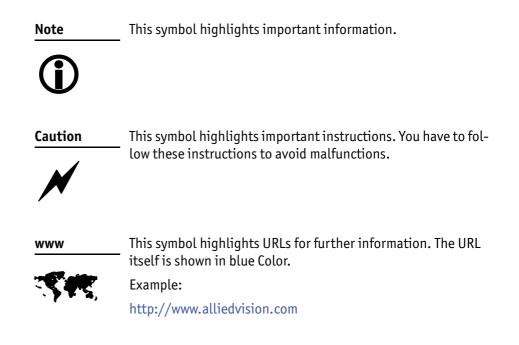
Table 1: Document history (Sheet 8 of 8)

Manual overview

This manual overview describes each chapter of this manual shortly.

- Chapter Contacting Allied Vision lists Allied Vision contact data for both:
 - technical information / ordering
 - commercial information
- Chapter Introduction (this chapter) gives you the document history, a manual overview and conventions used in this manual (styles and symbols). Furthermore you learn how to get more information on how to install hardware (1394 Installation Manual), available Allied Vision software (incl. documentation) and where to get it.
- Chapter Marlin cameras gives you a short introduction to the Stingray cameras with their FireWire technology. Links are provided to data sheets and brochures on the Allied Vision website.
- Chapter Compliance and intended use gives you information about conformity and intended use of Allied Vision cameras.
- Chapter Filter and lenses describes the IR cut filter and suitable camera lenses.
- Chapter Specifications lists camera details and spectral sensitivity diagrams for each camera type.
- Chapter Camera dimensions provides CAD drawings of standard housing (copper and GOF) models, tripod adapter, and a cross section of C-Mount.
- Chapter Camera interfaces describes in detail the inputs/outputs of the cameras (incl. Trigger features). For a general description of the interfaces (FireWire and I/O connector) see **1394 Installation Manual**.
- Chapter Description of the data path describes in detail IIDC conform as well as Allied Vision-specific camera features.
- Chapter Controlling image capture describes trigger modi, exposure time, one-shot/multi-shot/ISO_Enable features. Additionally special Allied Vision features are described: sequence mode and secure image signature (SIS).
- Chapter Video formats, modes and bandwidth lists all available fixed and Format_7 modes (incl. color modes, frame rates, binning/sub-sampling, AOI=area of interest).
- Chapter How does bandwidth affect the frame rate? gives some considerations on bandwidth details.
- Chapter Configuration of the camera lists standard and advanced register descriptions of all camera features.
- Chapter How does bandwidth affect the frame rate? explains where to get information on firmware updates and explains the extended version number scheme of FPGA/µC.
- Chapter Appendix lists the sensor position accuracy of Allied Vision cameras.
- Chapter Index gives you quick access to all relevant data in this manual.

Conventions used in this manual


To give this manual an easily understood layout and to emphasize important information, the following typographical styles and symbols are used:

Styles

Style	Function	Example
Bold	Programs, inputs or highlighting important things	bold
Courier	Code listings etc.	Input
Upper case	Register	REGISTER
Italics	Modes, fields	Mode
Parentheses and/or blue	Links	(Link)

Table 2: Styles

Symbols

More information

For more information on hardware and software read the following:

• **1394 Installation Manual** describes the hardware installation procedures for all 1394 Allied Vision cameras (Dolphin, Oscar, Marlin, Guppy, Pike, Stingray). Additionally you get safety instructions and information about camera interfaces (IEEE1394a/b copper and GOF, I/O connectors, input and output).

You find the 1394 Installation Manual here:

http://www.alliedvision.com/en/support/technical-documentation

All **software packages** (including **documentation** and **release notes**) provided by Allied Vision can be downloaded at: http://www.alliedvision.com/en/support/software-down-loads

Before operation

	We place the hi	ighest demands for quality on our cameras.
Target group		Manual is the guide to detailed technical information of the cam- ten for experts.
Getting started	For a quick guide how to get started read 1394 Installation Manual first.	
	Note	Please read through this manual carefully before operating the camera. For information on Allied Vision accessories and software read 1394 Installation Manual.
	Caution	Before operating any Allied Vision camera read safety instruc- tions and ESD warnings in 1394 Installation Manual.

Introduction

Note	To demonstrate the properties of the camera, all examples in
(i)	this manual are based on the FirePackage OHCI API software and the SmartView application.

Note

The camera also works with all **IIDC** (formerly DCAM) compatible IEEE 1394 programs and image processing libraries.

All naming in this document relates to FirePackage, not to GenICam.

www

Software (Vimba and all other software): http://www.alliedvision.com/en/support/software-downloads

Firmware: http://www.alliedvision.com/en/support/firmware

Technical documentation (overview page): http://www.alliedvision.com/en/support/technical-documentation

Technical papers (appnotes, white papers) and knowledge base:

http://www.alliedvision.com/en/support/technical-papersknowledge-base

Marlin cameras

Marlin cameras

- Marlin Marlin cameras enable cost-effective solutions for digital image processing. With the Marlin, Allied Vision presents a whole series of attractive digital camera entry-level models of the FireWire™ type.
- **Image applications** Allied Vision offer a range of products to meet various requirements of image applications.
 - **FireWire** The industry standard IEEE 1394 (FireWire or i.Link) facilitates the simplest computer compatibility and bidirectional data transfer using the plug-and-play process. Further development of the IEEE 1394 standard has already made 800 Mbit/second possible and the FireWire roadmap is already envisaging 1600 Mbit/second, with 3.2 Gbit/second as the next step. Investment in this standard is therefore secure for the future; each further development takes into account compatibility with the preceding standard, and vice versa, meaning that IEEE 1394b is backward-compatible with IEEE 1394a. Your applications will grow as technical progress advances.
- **High quality images** Operating in 8-bit and 10-bit mode (CCD b/w only), the cameras ensure very high quality images under almost all circumstances. The Marlin is equipped with an asynchronous trigger shutter as well as true partial scan, and integrates numerous useful and intelligent smart features for image processing.

Note	All naming in this document relates to FirePackage, not to GenICam.
www	For further information on the highlights of Marlin types , the Marlin family and the whole range of Allied Vision FireWire
	cameras read the data sheets and brochures on our website:

http://www.alliedvision.com/en/support/technical-documentation/marlin-documentation

Compliance and intended use

Compliance and intended use

Compliance notifications

For customers in Europe:

Allied Vision has demonstrated the fulfillment of the requirements relating to the Marlin camera family:

- Directive 2014/30/EU (Electromagnetic compatibility)
- Directive 2011/65/EU, incl. amendment 2015/863/EU (RoHS)

• Directive 2012/19/EU (Waste of Electric and Electronic Equipment, WEEE)

For customers in the USA

United States of America: Supplier Declaration of Conformity

Marlin cameras comply with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference, and
- 2. this device must accept any interference received, including interference that may cause undesired operation.

Responsible Party – U.S. Contact Information

Allied Vision Technologies, Inc. 102 Pickering Way – Suite 502 Exton, PA 19341 Tel: +1 978 225 2030

Note: Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Class B digital device

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

We caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Avoid electromagnetic interferences

For all power and interface connections, only use shielded cables or cables recommended by Allied Vision.

Camera applications and intended use

General use

- The user is responsible for operating the camera within the specifications that are defined in this document, and within appropriate environmental conditions and technical prerequisites, to ensure trouble-free camera operation.
- The camera is compliant with current data communication standards; however, those standards do not allow for self-monitoring. Thus, the camera cannot be used as a standalone device for security-related monitoring operations.
- The camera is a hardware product. Only when used with appropriate accompanying software, the camera will produce the desired results. The realization of intelligent solutions requires additional software that is suitable to run with the camera.
- The camera is a component, it is neither a complete product, nor is it a ready-made technical solution.
- The camera-supporting software can be obtained and installed separately from the camera. Usage of the software is solely the responsibility of the user.
- The camera must not be opened. For all repair tasks, contact Allied Vision or one of Allied Vision's authorized representatives.
- Observe the intended use. The camera must only be used for purposes that are in conformity with the stated intended use.
- Additionally, refer to the warranty information on the Allied Vision website.

Use in medical devices

The camera provides basic adequacy to be used in medical devices as well, however, is not specially designated for operation in medical devices. When used as part of a medical device, a review of the specific application is necessary. Users who integrate the camera into an application must comply with the rules and regulations concerning medical devices.

Copyright and trademarks

All texts, pictures and graphics are protected by copyright and other laws protecting intellectual property. All content is subject to change without notice.

All trademarks, logos, and brands cited in this document are property and/or copyright material of their respective owners. Use of these trademarks, logos, and brands does not imply endorsement.

Copyright © 2018 Allied Vision GmbH. All rights reserved.

Specifications

Note

For information on bit/pixel and byte/pixel for each color mode see Table 70: ByteDepth on page 146.

Maximum protrusion means the distance from lens flange to the glass filter in the camera.

Marlin F-033B/C

Feature	Specification
Image device	Type 1/2 (diag. 8 mm) progressive scan SONY CCD ICX-414AL/AQ with HAD microlens
Effective chip size	6.5 mm x 4.9 mm
Cell size	9.9 μm x 9.9 μm
Picture size (max.)	656 x 494 pixels (Format_7 Mode_0)
Lens mount	C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) mechanical flange back to filter distance: 8.2 mm
ADC	12 bit
Color modes	Only color: Raw8, RGB8, YUV422, YUV411
Frame rates	3.75 fps; 7.5 fps; 15 fps; 30 fps; 60 fps Up to 73.06 fps in Format_7
Gain control	Manual: 0-24 dB (0.035 dB/step); auto gain (select. AOI)
Shutter speed	32 μs67,108,864 μs (~67s); auto shutter (select. A0I)
External trigger shutter	Trigger_Mode_0, Trigger_Mode_1, advanced feature: Trigger_Mode_15 (bulk); image transfer by command; trigger delay
Internal FIFO memory	Up to 17 frames
Look-up tables	One, user-programmable (10 bit \rightarrow 8 bit); default gamma (0.5)
Smart functions	Real-time shading correction, image sequencing, image mirror (L-R ↔ R-L), bin- ning, serial port (IIDC V1.31), secure image signature (SIS), user profiles
	Two configurable inputs, two configurable outputs
	RS-232 port (serial port, IIDC V1.31)
Transfer rate	100 Mbit/s, 200 Mbit/s, 400 Mbit/s
Digital interface	IEEE 1394a IIDC V1.3
Power requirements	DC 8 V - 36 V via IEEE 1394 cable or 12-pin HIROSE
Power consumption	Typical < 3 watt (@ 12 V DC)
Dimensions	72 mm x 44 mm x 29 mm (L x W x H); incl. connectors, without tripod and lens
Mass	<120 g (without lens)
Operating temperature	+ 5 °C + 45 °C
Storage temperature	-10 °C + 70 °C
Standard accessories	b/w and color: IR cut filter
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)

Table 3: Specification Marlin F-033B/C

Marlin F-046B/C

Feature	Specification
Image device	Type 1/2 (diag. 8 mm) progressive scan SONY CCD ICX-415AL/AQ with HAD microlens
Effective chip size	6.5 mm x 4.8 mm
Cell size	8.3 μm x 8.3 μm
Picture size (max.)	780 x 582 (Format_7 Mode_0)
Lens mount	C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) mechanical flange back to filter distance: 8.2 mm
ADC	12 bit
Color modes	Only color: Raw8, RGB8, YUV422, YUV411
Frame rates	3.75 fps; 7.5 fps; 15 fps; 30 fps; up to 52.81 fps in Format_7
Gain control	Manual: 0-24 dB (0.035 dB/step); auto gain (select. AOI)
Shutter speed	32 μs67,108,864 μs (~67s); auto shutter (select. A0I)
External trigger shutter	Trigger_Mode_0, Trigger_Mode_1, advanced feature: Trigger_Mode_15 (bulk); image transfer by command; trigger delay
Internal FIFO memory	Up to 13 frames
Number of look-up tables	One, user-programmable (10 bit \rightarrow 8 bit); gamma (0.5)
Smart functions	Real-time shading correction image sequencing, image mirror (L-R ↔ R-L), bin- ning, secure image signature (SIS), user profiles
	Two configurable inputs, two configurable outputs
	RS-232 port (serial port, IIDC V1.31)
Transfer rate	100 Mbit/s, 200 Mbit/s, 400 Mbit/s
Digital interface	IEEE 1394 IIDC V1.3
Power requirements	DC 8 V - 36 V via IEEE 1394 cable or 12-pin HIROSE
Power consumption	Less than 3 watt (@ 12 V DC)
Dimensions	72 mm x 44 mm x 29 mm (L x W x H); without tripod and lens
Mass	<120 g (without lens)
Operating temperature	+5 +45 °Celsius
Storage temperature	-10 +70 °Celsius
Standard accessories	b/w and color: IR cut filter
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)

Table 4: Specification Marlin F-046B/C

Marlin F-080B/C (-30 fps*)

* Variant: F-080-30 fps only: This variant offers higher speed at a slight expense in image quality.

Feature	Specification
Image device	Type 1/3 (diag. 6 mm) progressive scan SONY CCD ICX-204AL/AK with HAD microlens
Effective chip size	4.8 mm x 3.6 mm
Cell size	4.65 μm x 4.65 μm
Picture size (max.)	1032 x 778 (Format_7 Mode_0)
Lens mount	C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) mechanical flange back to filter distance: 8.2 mm
ADC	12 bit
Color modes	Only color: Raw8, RGB8, YUV422, YUV411
Frame rates	3.75 fps; 7.5 fps; 15 fps; 30 fps*; up to 20.08 (30.13*) fps in Format_7
Gain control	Manual: 0-24 dB (0.035 dB/step); auto gain (select. AOI)
Shutter speed	50 (37 [*]) μs 67,108,864 μs (~67s); auto shutter (select. AOI)
External trigger shutter	Trigger_Mode_0, Trigger_Mode_1, advanced feature: Trigger_Mode_15 (bulk); image transfer by command; trigger delay
Internal FIFO memory	Up to 7 frames
Number of look-up tables	One, user-programmable (10 bit \rightarrow 8 bit); gamma (0.5)
Smart functions	Real-time shading correction image sequencing, image mirror (L-R \leftrightarrow R-L), bin- ning, secure image signature (SIS), user profiles
	Two configurable inputs, two configurable outputs
	RS-232 port (serial port, IIDC V1.31)
Transfer rate	100 Mbit/s, 200 Mbit/s, 400 Mbit/s
Digital interface	IEEE 1394 IIDC V1.3
Power requirements	DC 8 V - 36 V via IEEE 1394 cable or 12-pin HIROSE
Power consumption	Less than 3 watt (@ 12 V DC)
Dimensions	72 mm x 44 mm x 29 mm (L x W x H); without tripod and lens
Mass	<120 g (without lens)
Operating temperature	+5 +45 °Celsius
Storage temperature	-10 +70 °Celsius
Standard accessories	b/w and color: IR cut filter
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)

Table 5: Specification Marlin F-080B/C

Marlin F-145B2/C2

Feature	Specification
Image device	Type 1/2 (diag. 8 mm) progressive scan SONY CCD ICX-205AL/AK with HAD microlens
Effective chip size	6.5 mm x 4.8 mm
Cell size	4.65 μm x 4.65 μm
Picture size (max.)	1392 x 1040 pixels (Format_7 Mode_0)
Lens mount	C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) mechanical flange back to filter distance: 8.2 mm
ADC	12 bit
Color modes	Only color: Raw8, RGB8, YUV422, YUV411
Frame rates	3.75 fps; 7.5 fps Up to 10 fps in Format_7
Gain control	Manual: 0-24 dB (0.035 dB/step); auto gain (select. AOI)
Shutter speed	38 μs 67,108,864 μs (~67s); auto shutter (select. A0I)
External trigger shutter	Trigger_Mode_0, Trigger_Mode_1, advanced feature: Trigger_Mode_15 (bulk); image transfer by command; trigger delay
Internal FIFO memory	Up to 3 frames
Number of look-up tables	One, user-programmable (10 bit \rightarrow 8 bit); gamma (0.5)
Smart functions	Real-time shading correction image sequencing, image mirror (L-R ↔ R-L), bin- ning, serial port (IIDC V1.31), secure image signature (SIS), user profiles Two configurable inputs, two configurable outputs RS-232 port (serial port, IIDC V1.31)
Transfer rate	100 Mbit/s, 200 Mbit/s, 400 Mbit/s
Digital interface	IEEE 1394 IIDC V1.3
Power requirements	DC 8 V - 36 V via IEEE 1394 cable or 12-pin HIROSE
Power consumption	Less than 3 watt (@ 12 V DC)
Dimensions	72 mm x 44 mm x 29 mm (L x W x H); without tripod and lens
Mass	<120 g (without lens)
Operating temperature	+5 +45 °Celsius
Storage temperature	-10 +70 °Celsius
Standard accessories	b/w and color: IR cut filter
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)

Table 6: Specification Marlin F-145B2/C2

Marlin F-146B/C

Feature	Specification
Image device	Type 1/2 (diag. 8 mm) progressive scan SONY CCD ICX-267AL/AK with HAD microlens
Effective chip size	6.5 mm x 4.8 mm
Cell size	4.65 μm x 4.65 μm
Picture size (max.)	1392 x 1040 pixels (Format_7 Mode_0)
Lens mount	C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) mechanical flange back to filter distance: 8.2 mm
ADC	12 bit
Color modes	Only color: Raw8, RGB8, YUV422, YUV411
Frame rates	3.75 fps, 7.5 fps, 15 fps Up to 17.4 fps in Format_7
Gain control	Manual: 0-24 dB (0.035 dB/step); auto gain (select. AOI)
Shutter speed	46 μs 67,108,864 μs (~67s); auto shutter (select. AOI)
External trigger shutter	Trigger_Mode_0, Trigger_Mode_1, advanced feature: Trigger_Mode_15 (bulk); image transfer by command; trigger delay
Internal FIFO memory	Up to 3 frames
Number of look-up tables	One, user-programmable (10 bit \rightarrow 8 bit); gamma (0.5)
Smart functions	Real-time shading correction image sequencing, image mirror (L-R ↔ R-L), bin- ning, secure image signature (SIS), user profiles
	Two configurable inputs, two configurable outputs
	RS-232 port (serial port, IIDC V1.31)
Transfer rate	100 Mbit/s, 200 Mbit/s, 400 Mbit/s
Digital interface	IEEE 1394 IIDC V1.3
Power requirements	DC 8 V - 36 V via IEEE 1394 cable or 12-pin HIROSE
Power consumption	Less than 3 watt (@ 12 V DC)
Dimensions	72 mm x 44 mm x 29 mm (L x W x H); without tripod and lens
Mass	<120 g (without lens)
Operating temperature	+5 +45 °Celsius
Storage temperature	-10 +70 °Celsius
Standard accessories	b/w and color: IR cut filter
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)

Table 7: Specification Marlin F-146B/C

Marlin F-201B/C

Feature	Specification
Image device	Type 1/1.8 (diag. 9 mm) progressive scan SONY CCD ICX274AL/AQ w/ HAD microlens
Effective chip size	7.2 mm x 5.4 mm
Cell size	4.40 μm x 4.40 μm
Picture size (max.)	1628 x 1236 (Format_7 Mode_0)
Lens mount	C-Mount: 17.526 mm (in air); Ø 25.4 mm (32 tpi) mechanical flange back to filter distance: 8.2 mm
ADC	12 bit
Color modes	Only color: Raw8, RGB8, YUV422, YUV411
Frame rates	3.75 fps; 7.5 fps Up to 12.5 fps in Format_7 Mode_0
Gain control	Manual: 0-24 dB (0.035 dB/step); auto gain (select. AOI)
Shutter speed	59 μs 67,108,864 μs (~67s); auto shutter (select. A0I)
External trigger shutter	Trigger_Mode_0, Trigger_Mode_1, advanced feature: Trigger_Mode_15 (bulk); image transfer by command; trigger delay
Internal FIFO memory	Up to 2 frames
Number of look-up tables	One, user-programmable (10 bit \rightarrow 8 bit); gamma (0.5)
Smart functions	Real-time shading correction, image sequencing, image mirror (L-R ↔ R-L), bin- ning, serial port (IIDC V1.31), secure image signature (SIS), user profiles
	Two configurable inputs, two configurable outputs
	RS-232 port (serial port, IIDC V1.31)
Transfer rate	100 Mbit/s, 200 Mbit/s, 400 Mbit/s
Digital interface	IEEE 1394 IIDC V1.3
Power requirements	DC 8 V - 36 V via IEEE 1394 cable or 12-pin HIROSE
Power consumption	Less than 3 watt (@ 12 V DC)
Dimensions	72 mm x 44 mm x 29 mm (L x W x H); without tripod and lens
Mass	<120 g (without lens)
Operating temperature	+5 +45 °Celsius
Storage temperature	-10 +70 °Celsius
Standard accessories	b/w and color: IR cut filter
Software packages	http://www.alliedvision.com/en/support/software-downloads (free of charge)

Table 8: Specification Marlin F-201B/C

Spectral sensitivity

Note

All measurements were done without protection glass / without filter. With protection glass or filters, quantum efficiency (QE) decreases by approximately 10%.

The uncertainty in measurement of the QE values is $\pm 10.25\%$.

This is mainly due to uncertainties in the measuring apparatus itself (Ulbricht sphere, optometer, etc.)

Manufacturing tolerance of the sensor increases overall uncertainty.

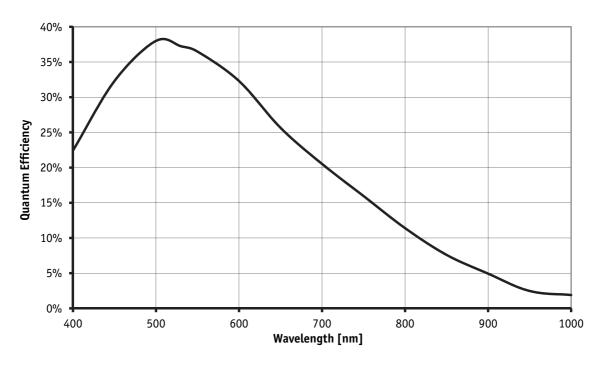


Figure 1: Spectral sensitivity of Marlin F-033B without cut filter and optics

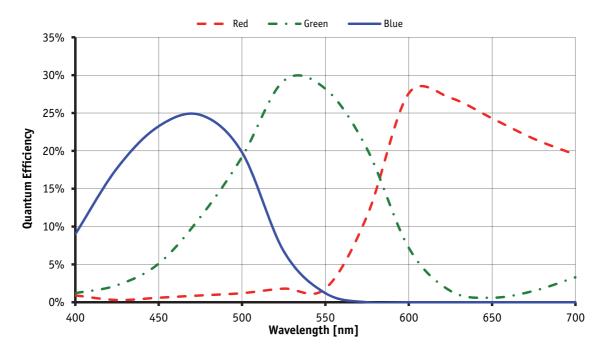


Figure 2: Spectral sensitivity of Marlin F-033C without cut filter and optics

Marlin Technical Manual V.2.7.2

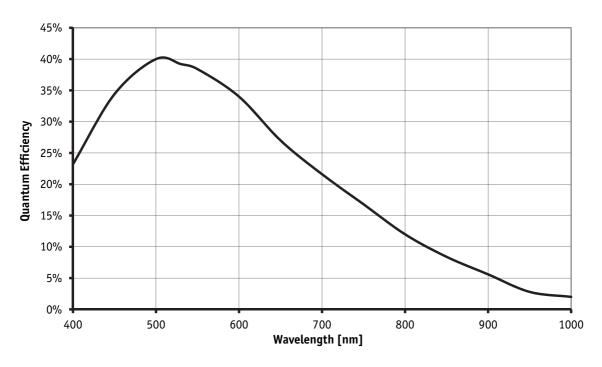


Figure 3: Spectral sensitivity of Marlin F-046B without cut filter and optics

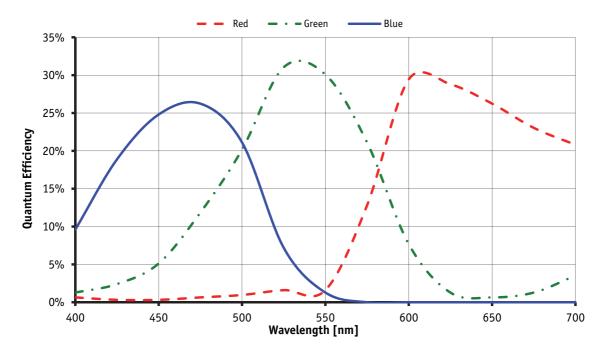


Figure 4: Spectral sensitivity of Marlin F-046C without cut filter and optics

Marlin Technical Manual V.2.7.2

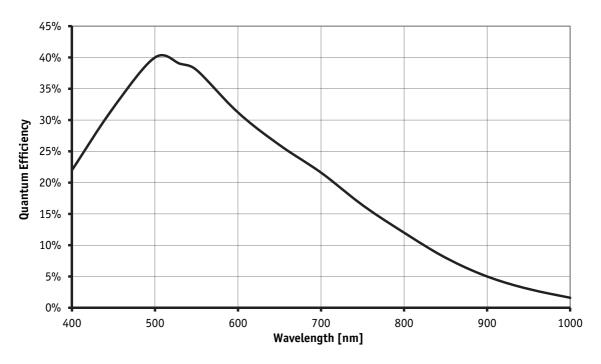


Figure 5: Spectral sensitivity of Marlin F-080B without cut filter and optics

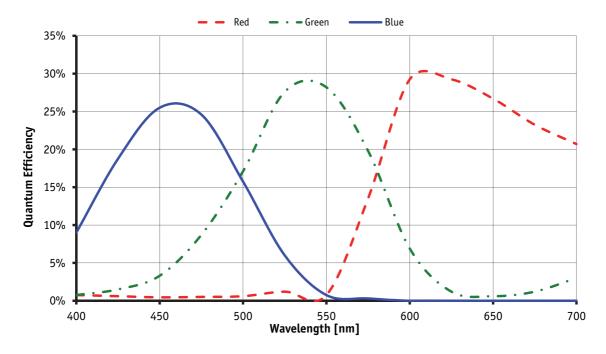


Figure 6: Spectral sensitivity of Marlin F-080C without cut filter and optics

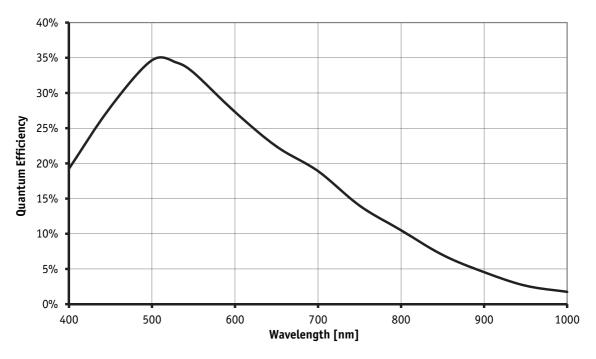


Figure 7: Spectral sensitivity of Marlin F-145B2 without cut filter and optics

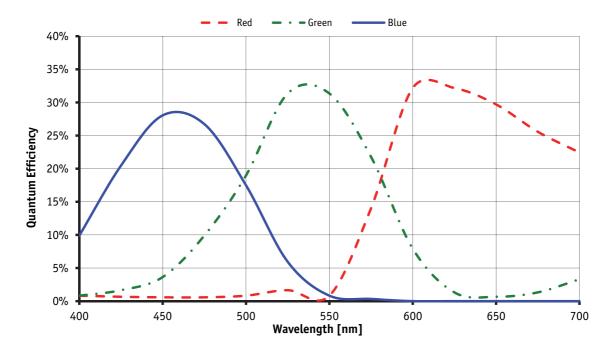


Figure 8: Spectral sensitivity of Marlin F-145C2 without cut filter and optics

Marlin Technical Manual V.2.7.2

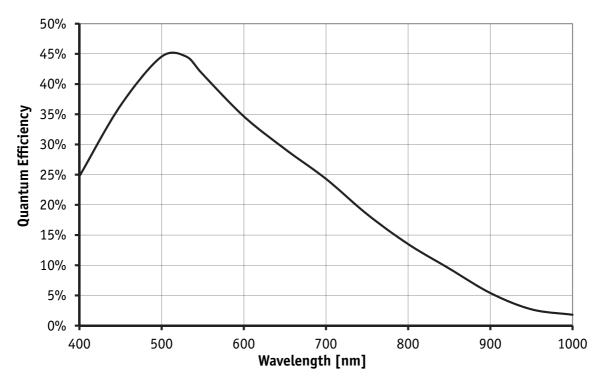


Figure 9: Spectral sensitivity of Marlin F-146B without cut filter and optics

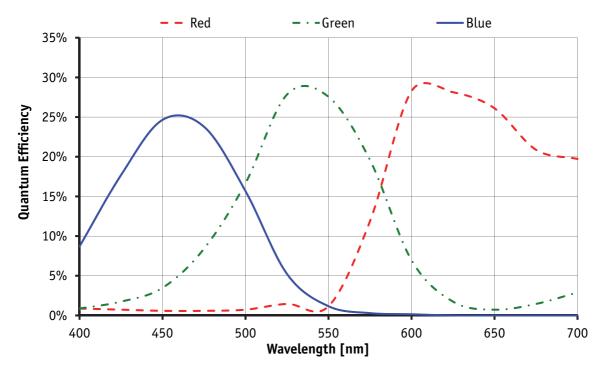


Figure 10: Spectral sensitivity of Marlin F-146C without cut filter and optics

Marlin Technical Manual V.2.7.2

Specifications

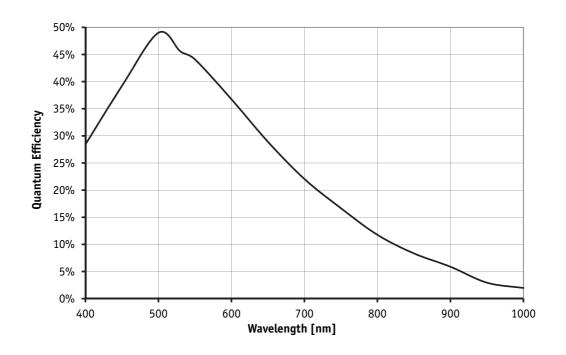


Figure 11: Spectral sensitivity of Marlin F-201B without cut filter and optics

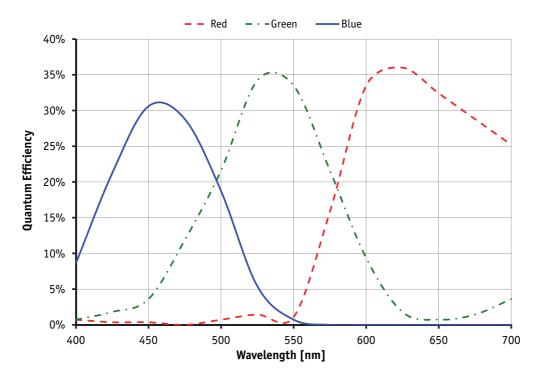
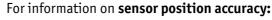
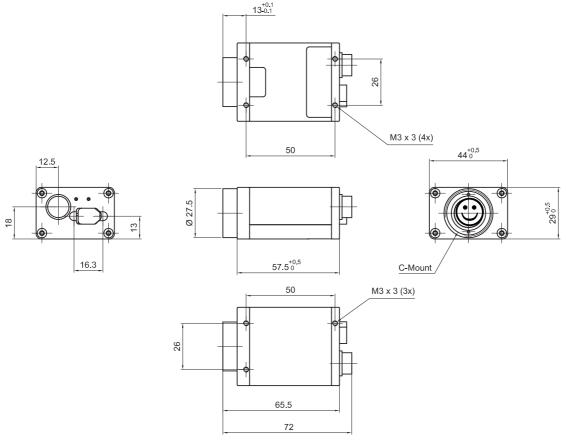



Figure 12: Spectral sensitivity of Marlin F-201C without cut filter and optics

Camera dimensions


Note

(sensor shift x/y, optical back focal length z and sensor rotation α) see Chapter Sensor position accuracy of Marlin cameras on page 207.

Marlin standard housing

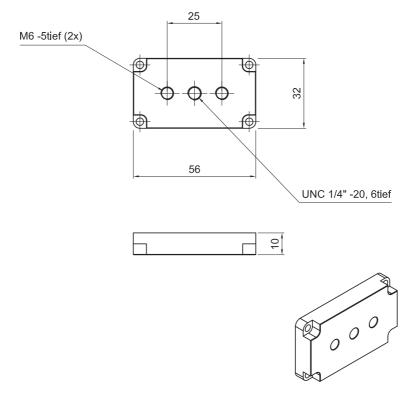

Body size: 72 mm x 44 mm x 29 mm (L x W x H) Mass: 120 g (without lens)

Figure 13: Camera dimensions

Camera dimensions

Tripod adapter

Tripod-Adapter AT -ST

Figure 14: Tripod dimensions

Filter and lenses

The following illustration shows the spectral transmission of the IR cut filter:

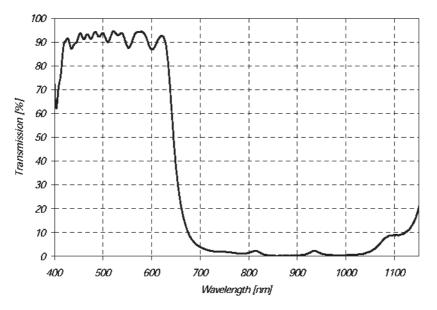


Figure 15: Spectral transmission of Jenofilt 217

Camera lenses

Allied Vision offers different lenses from a variety of manufacturers. The following table lists selected image formats depending on camera type, distance and the focal length of the lens.

Focal length Marlin F-033/046/145/146	Distance = 0.5 m	Distance = 1 m
4.8 mm	0.5 m x 0.67 m	1.0 m x 1.33 m
8 mm	0.3 m x 0.4 m	0.6 m x 0.8 m
12 mm	0.195 m x 0.26 m	0.39 m x 0.58 m
16 mm	0.145 m x 0.19 m	0.29 m x 0.38 m
25 mm	9.1 cm x 12.1 cm	18.2 cm x 24.2 cm
35 mm	6.4 cm x 8.51 cm	12.8 cm x 17.02 cm
50 mm	4.4 cm x 5.85 cm	8.8 cm x 11.7 cm

Table 9: Focal length vs. field of view (Marlin F-033/046/145/146)

Focal length Marlin F-080	Distance = 0.5 m	Distance = 1 m
4.8 mm	0.375 m x 0.5 m	0.75 m x 1 m
8 mm	0.22 m x 0.29 m	0.44 m x 0.58 m
12 mm	0.145 m x 0.19 m	0.29 m x 0.38 m
16 mm	11 cm x 14.7 cm	22 cm x 29.4 cm
25 mm	6.9 cm x 9.2 cm	13.8c m x 18.4 cm
35 mm	4.8 cm x 6.4 cm	9.6 cm x 12.8 cm
50 mm	3.3 cm x 4.4 cm	6.6 cm x 8.8 cm

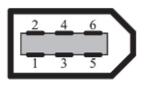
Table 10: Focal length vs. field of view (Marlin F-080)

Focal length Marlin F-201	Distance = 0.5 m	Distance = 1 m
4.8 mm	0.55 m x 0.74 m	1.1 m x 1.48 m
8 mm	0.33 m x 0.44 m	0.67 m x 0.89 m
12 mm	0.22 m x 0.29 m	0.43 m x 0.64 m
16 mm	0.161 m x 0.21 m	0.32 m x 0.42 m
25 mm	10.1 cm x 13.2 cm	20.2 cm x 26.9 cm
35 mm	7.1 cm x 9.4 cm	14.2 cm x 18.9 cm
50 mm	4.9 cm x 6.5 cm	9.8 cm x 13 cm

Table 11: Focal length vs. field of view (Marlin F-201)

Camera interfaces

This chapter gives you detailed information on status LEDs, inputs and outputs, trigger features and transmission of data packets.


Not	e
(D

For a detailed description of the camera interfaces (FireWire, I/O connector), ordering numbers and operating instructions see the 1394 Installation Manual.

Read all **Notes** and **Cautions** in the **1394 Installation Manual**, before using any interfaces.

IEEE 1394a port pin assignment

The IEEE 1394a connector is designed for industrial use and has the following pin assignment as per specification:

Pin	Signal	
1	Cable power	
2	Cable GND	
3	TPB-	
4	TPB+	
5	TPA-	
6	TPA+	

Figure 16: IEEE 1394a connector

Cables with latching connectors on one or both sides can be used and are available with various lengths of 4.5 m or up to 17.5 m.

www

For **more information on cables** and on **ordering cables online** (by clicking the article and sending an inquiry) go to:

http://www.alliedvision.com/en/contact

Camera I/O connections

1_9

(3) (11) (12) (7

2 10 8

The camera is not intended to be connected to a DC distribution network. The maximum length for I/O cables must not exceed 30 m.

Pin	Signal	Direction	Level	Description
1	External GND		GND for RS232 and ext. power	External ground for RS232 and external power
2	External Power		+8 +36 V DC	Power supply
3				
4	Camera In 1	In	U _{in} (high) = 2 VU _{inVCC} U _{in} (low) = 0 V0.8 V	Camera Input 1 (GPIn1) default: Trigger
5				
6	Camera Out 1	Out	Open collector	Camera Output 1 (GPOut1) default: IntEna
7	Camera In GND	In	Common GND for inputs	Camera Common Input Ground (In GND)
8	RxD RS232	In	RS232	Terminal Receive Data
9	TxD RS232	Out	RS232	Terminal Transmit Data
10	Camera Out Power	In	Common VCC for outputs max. 36 V DC	Camera Output Power for digital outputs (OutVCC)
11	Camera In 2	In	U _{in} (high) = 2 VU _{inVCC} U _{in} (low) = 0 V0.8 V	Camera Input 2 (GPIn2) default: -
12	Camera Out 2	Out	Open collector	Camera Output 2 (GPOut2) default: -

Figure 17: Camera I/O connector pin assignment

Camera interfaces

Note	12-pin Hirose I/O cables
(i)	The General Purpose I/O port has a Hirose HR10-10R-12PA(73) connector on the camera side. The mating cable connector is:
	 Hirose HR10A-10P-12S(73) for soldering
	 Hirose HR10A-10P-12SC(73) for crimping
Note	GP = General Purpose
(i)	For a detailed description of the I/O connector and its operat- ing instructions see the 1394 Installation Manual, Chapter <i>Marlin input description</i> .

Read all **Notes** and **Cautions** in the **1394 Installation Manual**, before using the I/O connector.

Status LEDs

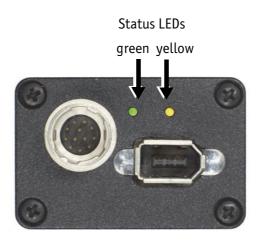


Figure 18: Position of Status LEDs

Status LED green

The green LED (power) indicates that the camera is being supplied with sufficient voltage and is ready for operation.

State	Description
Power/S2	LED off - power off
	LED on - power on

Table 12: LED indication: green

Status LED yellow

The following states are displayed via the yellow LED:

State	Description
Com/S1	Asynchronous and isochronous data transmission active (indicated asynchronously to transmission over the 1394 bus)

Table 13: LED indication: yellow

Blink codes are used to signal warnings or error states:

Class S1	Warning 1 blink	DCAM 2 blinks	MISC 3 blinks	FPGA 4 blinks	Stack 5 blinks
FPGA Boot error				1-5 blinks	
Stack setup					1 blink
Stack start					2 blinks
No FLASH object			1 blink		
No DCAM object		1 blink			
Register mapping		2 blinks			
VMode_ERROR_STATUS	1 blink				
FORMAT_7_ERROR_1	2 blinks				
FORMAT_7_ERROR_2	3 blinks				

Table 14: Error Codes

The longer OFF-time of 3.5 sec. signals the beginning of a new class period. The error codes follow after a shorter OFF-time of 1.5 sec.

Example 3.5 sec. \rightarrow one blink \rightarrow 1.5 sec. \rightarrow 2 blinks

indicates a warning: Format_7_Error_1

Control and video data signals

The inputs and outputs of the camera can be configured by software. The different modes are described below.

Inputs

Note

()

1394 Installation Manual, Chapter *Marlin input description*.

For a general description of the **inputs** and **warnings** see the

The optical coupler inverts all input signals. Polarity is controlled via the IO_IN-P_CTRL1..2 register.

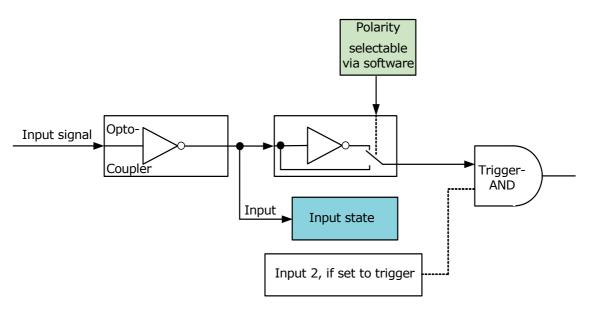


Figure 19: Input block diagram

Triggers

All inputs configured as triggers are linked by AND. If two inputs are being used as triggers, a high signal at the output of the block must be present on all inputs in order to generate a trigger signal. The polarity for each signal can be set separately via the inverting inputs. The camera must be set to **external triggering** to trigger image capture by the trigger signal.

Furthermore polarity of external triggering can be selected according to IIDC V1.3x register 0xF0F00830.

Input/output pin control

All input and output signals running over the camera $\rm I/O$ connector are controlled by an advanced feature register.

Register	Name	Field	Bit	Description
0xF1000300	IO_INP_CTRL1	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[16]	
		Polarity	[7]	0: low active
				1: high active
			[810]	Reserved
		InputMode	[1115]	Mode
				see Table 16: Input routing on page 47
			[1630]	Reserved
		PinState	[31]	RD: Current state of pin
0xF1000304	IO_INP_CTRL2	Same as IO_INP_C- TRL1		

Table 15: Advanced register: Input control

IO_INP_CTRL 1-2

The **Polarity** flag determines whether the input is low active (0) or high active (1). The **input mode** can be seen in the following table. The **PinState** flag is used to query the current status of the input.

• For inputs the **PinState** bit refers to the inverted output side of the optical coupler. This signals that an open input sets the PinState bit to **1**.

ID	Mode	Default
0x00	Off	
0x01	Reserved	
0x02	Trigger input	Input 1
0x03	Reserved	
0x060x0F	Reserved	
0x100x1F	Reserved	

Table 16: Input routing

Trigger delay

Since firmware version 2.03, the cameras feature various ways to delay image capture based on external trigger.

With IIDC V1.31 there is a standard CSR at Register F0F00534/834h to control a delay up to FFFh x timebase value. The following table explains the inquiry register and the meaning of the various bits.

Register	Name	Field	Bit	Description
0xF0F00534	TRIGGER_DELAY_INQUIRY	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Abs_Control_Inq	[1]	Capability of control with absolute value
		-	[2]	Reserved
		One_Push_Inq	[3]	One-push auto mode (con- trolled automatically by the camera once)
		Readout_Inq	[4]	Capability of reading out the value of this feature
		ON_OFF	[5]	Capability of switching this feature ON and OFF
		Auto_Inq	[6]	Auto Mode (controlled auto- matically by the camera)
		Manual_Inq	[7]	Manual mode (controlled by user)
		Min_Value	[819]	Minimum value for this fea- ture
		Max_Value	[2031]	Maximum value for this fea- ture

Table 17: Trigger delay inquiry register

Register	Name	Field	Bit	Description
0xF0F00834	TRIGGER_DELAY	Presence_Inq	[0]	Presence of this feature:
				0: N/A
				1:Available
		Abs_Control	[1]	Absolute value control
				0: Control with value in the value field
				1: Control with value in the absolute value CSR. If this bit=1 the value in the value field has to be ignored.
			[25]	Reserved
		ON_OFF	[6]	Write ON or OFF this feature
				ON=1 Read: Status of the feature
				OFF=0
			[719]	Reserved
		Value	[2031]	Value

Table 18: Trigger Delay CSR

The cameras also have an advanced register which allows even more precise image capture delay after receiving a hardware trigger.

Trigger delay advanced register

Register	Name	Field	Bit	Description
0xF1000400	TRIGGER_DELAY	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Trigger delay on/off
			[710]	Reserved
		DelayTime	[1131]	Delay time in µs

Table 19: Trigger delay advanced CSR

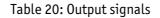
The advanced register allows the start of the integration to be delayed by max. $2^{21} \mu s$, which is max. 2.1 s after a trigger edge was detected.

 Switching trigger delay to ON also switches external Trigger_Mode_0 to ON.

• This feature works with external Trigger_Mode_0 only.

Outputs

Т


For a general description of the **outputs** and **warnings** see the **1394 Installation Manual**, Chapter *Marlin output description*.

Output features are configured by software. Any signal can be placed on any output.

The main features of output signals are described below:

gnal	Description
tEna (Integration Enable) signal	This signal displays the time in which exposure was made. By using a register this output can be delayed by up to 1.05 seconds. This signal can be used to fire a strobe flash.
val (Frame valid) signal	This feature signals readout from the sensor. This signal Fval follows IntEna.
usy signal	 This signal appears when: the exposure is being made or the sensor is being read out or data transmission is active.
	• data transmission is active. The camera is busy.

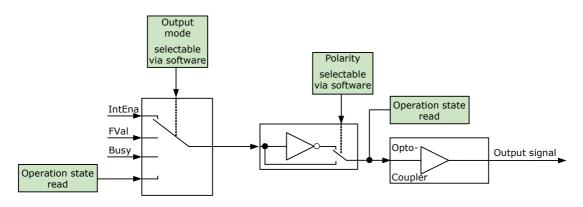


Figure 20: Output block diagram

IO_OUTP_CTRL 1-2

The outputs (Output mode, Polarity) are controlled via two advanced feature registers (see Table 21: Advanced register: **Output control** on page 51).

The **Polarity** field determines whether the output is inverted or not. The **output mode** can be viewed in the table below. The current status of the output can be queried and set via the **PinState**.

From firmware 2.03 onwards it is possible to read back the status of an output pin regardless of the output mode. This allows for example the host computer to determine if the camera is busy by simply polling the BUSY output.

Outputs in Direct Mode:

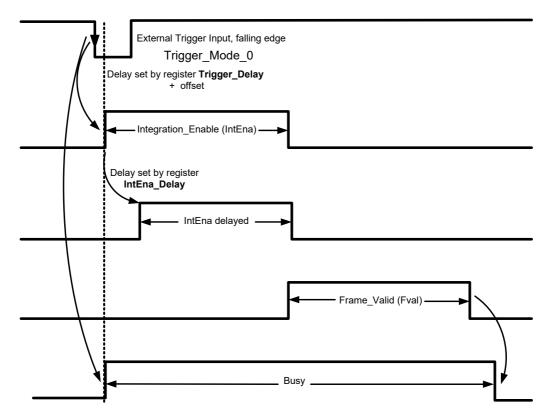
For correct functionality the **Polarity should always be set to 0** (SmartView: Trig/IO tab, Invert=No).

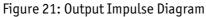
Register	Name	Field	Bit	Description
0xF1000320	IO_OUTP_CTRL1	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[16]	Reserved
		Polarity	[7]	0: Signal not inverted
				1: Signal inverted
			[810]	Reserved
		Output mode	[1115]	Mode
				see Table 22: Output routing on page 52
			[1630]	Reserved
		PinState	[31]	RD: Current state of pin
				WR: New state of pin
0xF1000324	IO_OUTP_CTRL2	Same as IO_OUT- P_CTRL1		

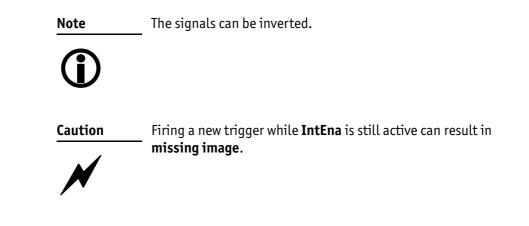
Table 21: Advanced register: Output control

Output modes

ID	Mode	Default
0x00	Off	
0x01	Output state follows PinState bit	Using this mode, the Polarity bit has to be set to 0 (not inverted). This is necessary for an error free display of the output status.
0x02	Integration enable	Output 1
0x03	Reserved	
0x04	Reserved	
0x05	Reserved	
0x06	FrameValid	
0x07	Busy	Output 2
0x08	Follow corresponding input (Inp1 ↔ Out1, Inp2 ↔ Out2,)	
0x090x0F	Reserved	
0x100x1F	Reserved	


Table 22: Output routing


The **Polarity** setting refers to the input side of the optical coupler output, **Pin-State O** switches off the output transistor and produces a low level over the resistor connected from the output to ground.


The following diagram illustrates the dependencies of the various output signals.

Camera interfaces

Camera interfaces

- Note that **trigger delay** in fact delays the image capture whereas the **IntEna_Delay** only delays the leading edge of the IntEna output signal but does not delay the image capture.
- As mentioned before, it is possible to set the outputs by software. Doing so, the achievable maximum frequency is strongly dependent on individual software capabilities. As a rule of thumb, the camera itself will limit the toggle frequency to not more than 700 Hz.

Pixel data

Pixel data are transmitted as isochronous data packets in accordance with the 1394 interface described in IIDC V1.3. The first packet of a frame is identified by the **1** in the **sync bit** (sy) of the packet header.

					sync bit	
0-7	8-15		16-23	24	-31	
data_length tg channel tCode (sy					sy	
header_CRC						
	Video data payload					
	data	_CRC				

Figure 22: Isochronous data block packet format: Source: IIDC V1.3

Field	Description
data_length	Number of bytes in the data field
tg	Tag field
	shall be set to zero
channel	Isochronous channel number , as programmed in the iso_channel field of the cam_sta_ctrl register
tCode	Transaction code
	shall be set to the isochronous data block packet tCode
sy	Synchronization value (sync bit)
	This is one single bit. It indicates the start of a new frame.
	It shall be set to 0001h on the first isochronous data block of a frame, and shall be set to zero on all other isochronous blocks
Video data payload	Shall contain the digital video information

Table 23: Description of data block packet format

- The video data for each pixel are output in either 8-bit or 10-bit format.
- Each pixel has a range of 256 or 1024 shades of gray.
- The digital value 0 is black and 255 or 1023 is white. In 16-bit mode the data output is MSB aligned.

The following table provides a description of the video data format for the different modes. (Source: IIDC V1.3 specification)

<YUV (4: 2: 2) format >

10111111			
U-(K+0)	Y-(K+0)	V-(K+0)	Y-(K+1)
U-(K+2)	Y-(K+2)	V-(K+2)	Y-(K+3)
U-(K+4)	Y-(K+4)	V-(K+4)	Y-(K+5)
			_
U-(K+Pn-6)	Y-(K+Pn-6)	V-(K+Pn-6)	Y-(K+Pn-5)
U-(K+Pn-4)	Y-(K+Pn-4)	V-(K+Pn-4)	Y-(K+Pn-3)
U-(K+Pn-2)	Y-(K+Pn-2)	V-(K+Pn-2)	Y-(K+Pn-1)

<YUV (4: 1: 1) format >

<u>/ 101 mile / </u>			
U-(K+0)	Y-(K+0)	Y-(K+1)	V-(K+0)
Y-(K+2)	Y-(K+3)	U-(K+4)	Y-(K+4)
Y-(K+5)	V-(K+4)	Y-(K+6)	Y-(K+7)
U-(K+Pn-8)	Y-(K+Pn-8)	Y-(K+Pn-7)	V-(K+Pn-8)
Y-(K+Pn-6)	Y-(K+Pn-5)	U-(K+Pn-4)	Y-(K+Pn-4)
Y-(K+Pn-3)	V-(K+Pn-4)	Y-(K+Pn-2)	Y-(K+Pn-1)

Figure 23: YUV422 and YUV411 format: Source: IIDC V1.3

Y-(K+4) Y-(K+5) Y-(K+6) Y-(K+7)	Y-(K+4) Y-(K+5) Y-(K+6) Y-(K+7 Y-(K+Pn-8) Y-(K+Pn-7) Y-(K+Pn-6) Y-(K+Pn	Y-(K+0)	Y-(K+1)	Y-(K+2)	Y-(K+3)
		Y-(K+4)	Y-(K+5)	Y-(K+6)	Y-(K+7)
	V./K+Do.8) V./K+Do.7) V./K+Do.6) V./K	1-(1(74)	1=(K+3)	1-(K+0)	1 1-0
	V.(K+Do.9) V.(K+Do.7) V.(K+Do.6) V.(K+Do				
	V-/K+Do-9) V-/K+Do-7) V-/K+Do-6) V-/K+Do				
	V_(K+Po.8) V_(K+Po.7) V_(K+Po.6) V_(K+Po				
	V_(K+Po_9) V_(K+Po_7) V_(K+Po_6) V_(K+Po	1			

< Y (Mono16) format >

High byte Low byte	
Y-(K+0)	Y-(K+1)
Y-(K+2)	Y-(K+3)
Y-(K+Pn-4)	Y-(K+Pn-3)
Y-(K+Pn-2)	Y-(K+Pn-1)

Figure 24: Y8 and Y16 format: Source: IIDC V1.3

<Y, R, G, B>

Each component has 8bit data. The data type is "Unsigned Char".

	Signal level (Decimal)	Data (Hexadecimal)
Highest	255	0xFF
-	254	0×FE
	:	:
	1	0x01
Lowest	0	0x00

<U, V>

Each component has 8bit data. The data type is "Straight Binary".

	Signal level (Decimal)	Data (Hexadecimal)
Highest (+)	127	0xFF
	126	0xFE
	:	:
	1	0x81
Lowest	0	0x80
	-1	0x7F
	:	:
	-127	0x01
Highest (-)	-128	0x00

< Y(Mono16) >

Y component has 16bit data. The data type is "Unsigned Short (big-endian)".

Y	Signal level (Decimal)	Data (Hexadecimal)
Highest	65535	0xFFFF
-	65534	0xFFFE
	:	
	1	0x0001
Lowest	0	0x0000

Figure 25: Data structure: Source: IIDC V1.3

Marlin Technical Manual V.2.7.2

Description of the data path

Description of the data path

Block diagrams of the cameras

The following diagrams illustrate the data flow and the bit resolution of image data after being read from the CCD sensor chip in the camera. The individual blocks are described in more detail in the following paragraphs. For sensor data see Chapter Specifications on page 24.

Black and white cameras

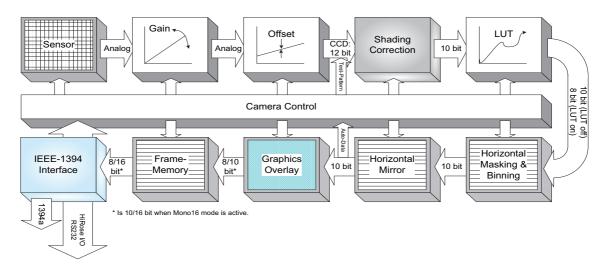


Figure 26: Block diagram b/w camera

Color cameras

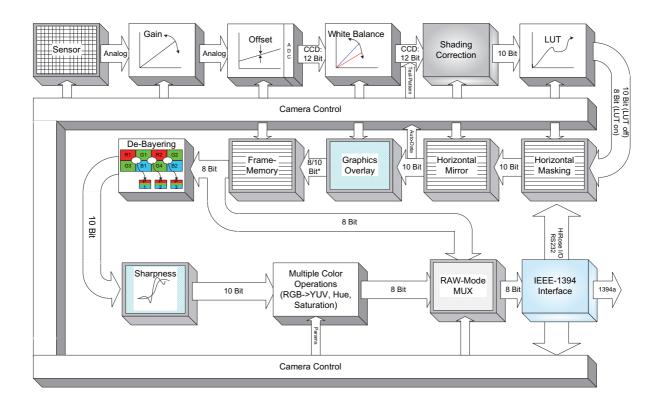


Figure 27: Block diagram color camera

White balance

There are two types of white balance:

- **one-push white balance**: white balance is done only once (not continuously)
- **auto white balance** (AWB): continuously optimizes the color characteristics of the image

Marlin color cameras have both **one-push white balance** and **auto white bal-ance**.

White balance is applied so that non-colored image parts are displayed non-colored.

White balance does **not** use the so called PxGA[®] (Pixel Gain Amplifier) of the analog front end (AFE) but a digital representation in the FPGA in order to modify the gain of the two channels with lower output by +9.5 dB (in 106 steps) relative to the channel with highest output.

The following screenshot is taken from the data sheet of the AFE and illustrates the details:

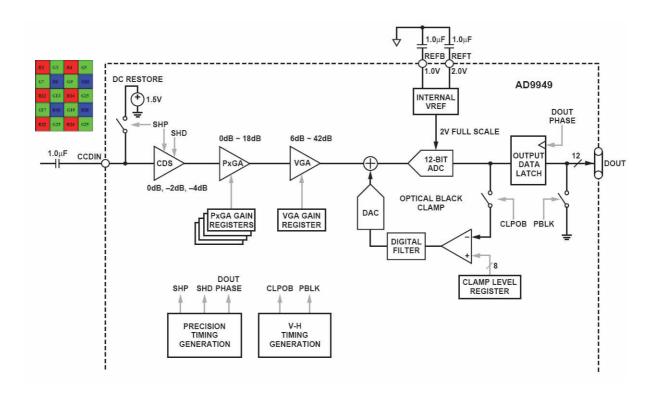


Figure 28: Block diagram of AFE (Source: Analog Devices)

The analog color signal, coming in pulse amplitude modulation from the sensor is in the form of the BAYER™ color pattern sequence. It is initially processed in the CDS (correlated double sampler) then bypasses the PxGA before further amplification and digitization.

From the user's point, the white balance settings are made in register 80Ch of IIDC V1.3. This register is described in more detail below.

Register	Name	Field	Bit	Description
0xF0F0080C	0×F0F0080C WHITE_BALANCE	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the Value field 1: Control with value in the Absolute value CSR If this bit=1, the value in the Value field will be ignored.
		-	[24]	Reserved
		One_Push	[5]	Write 1: begin to work (self-cleared after operation) Read: 1: in operation 0: not in operation If A_M_Mode = 1, this bit will be ignored.
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status 0: OFF 1: ON
		A_M_MODE	[7]	Write: set mode Read: read current mode 0: MANUAL 1: AUTO
	U/B_Value	[819]	U/B value This field is ignored when writing the value in Auto or OFF mode. If readout capability is not available, read- ing this field has no meaning.	
	V/R_Value	[2031]	V/R value	
			This field is ignored when writing the value in Auto or OFF mode. If readout capability is not available, read- ing this field has no meaning.	

Table 24: White balance register

The values in the U/B_Value field produce changes from green to blue; the V/ R_Value field from green to red as illustrated below.

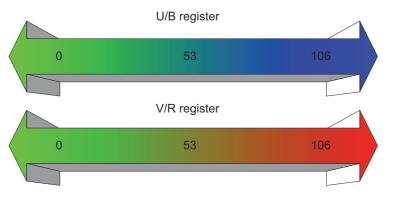


Figure 29: U/V slider range

One-push white balance

Note	Configuration
(i)	To configure th See Table 24: W

o configure this feature in control and status register (CSR): ee Table 24: White balance register on page 60.

The camera automatically generates frames, based on the current settings of all registers (GAIN, OFFSET, SHUTTER, etc.).

For white balance, in total **six** frames are processed and a grid of at least **300 samples** is equally spread over the work area. This area can be the field of view or a subset of it. The R-G-B component values of the samples are added and are used as actual values for for the **one-push white balance**.

This feature uses the assumption that the R-G-B component sums of the samples are equal; i.e., it assumes that the average of the sampled grid pixels is to be monochrome.

Note

- The following ancillary conditions should be observed for successful white balance:
 - There are no stringent or special requirements on the image content, it requires only the presence of monochrome pixels in the image.

If the image capture is active (e.g. **IsoEnable** set in register 614h), the frames used by the camera for white balance are also output on the 1394 bus. Any previously active image capture is restarted after the completion of white balance.

Pause image capture	
Capture image via One_shot	
$\overline{}$	Repeat steps six times
Calculate and set correction values	
$\overline{\overline{z}}$	
Restart image capture if necessary	

The following flow diagram illustrates **one-push white balance** sequence.

Figure 30: One-push white balance sequence

Finally, the calculated correction values can be read from the WHITE_BALANCE register 80Ch.

Auto white balance (AWB)

The **auto white balance** feature continuously optimizes the color characteristics of the image.

For the white balance algorithm a grid is used of at least 300 samples equally spread over the area of interest or a fraction of it.

Auto white balance can also be enabled by using an external trigger. However, if there is a pause of >10 seconds between capturing individual frames this process is aborted.

Note

The following ancillary conditions should be observed for successful white balance:

- There are no stringent or special requirements on the image content, it requires only the presence of equally weighted RGB pixels in the image.
- **Auto white balance** can be started both during active image capture and when the camera is in idle state.

Note

Configuration

To set position and size of the control area (Auto_Function_AOI) in an advanced register: see Table 106: Advanced register: **Autofunction AOI** on page 194.

AUTOFNC_AOI affects the auto shutter, auto gain and auto white balance features and is independent of the Format_7 AOI settings. If this feature is switched off the work area position and size follow the current active image size.

If the adjustment fails and the work area size and/or position becomes invalid this feature is automatically switched off - make sure to read back the ON_OFF flag if this feature doesn't work as expected.

Within this area, the R-G-B component values of the samples are added and used as actual values for the feedback.

The following drawing illustrates the AUTOFNC_AOI settings in greater detail.

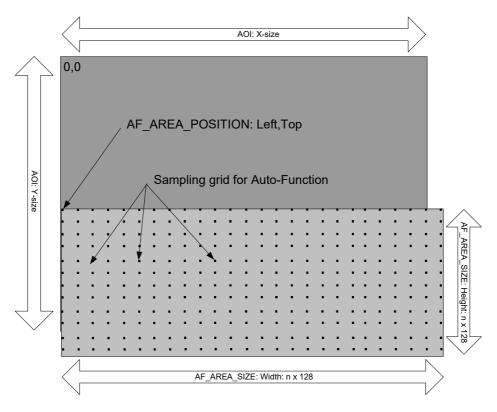


Figure 31: AUTOFNC_AOI positioning

The algorithm is based on the assumption that the R-G-B component sums of the samples shall be equal, i.e., it assumes that the mean of the sampled grid pixels is to be monochrome.

Auto shutter

In combination with auto white balance, all Marlin models are equipped with auto shutter feature.

When enabled, the auto shutter adjusts the shutter within the default shutter limits or within those set in advanced register F1000360h in order to reach the reference brightness set in auto exposure register.

Note

Target grey level parameter in SmartView corresponds to **Auto_exposure** register 0xF0F00804 (IIDC).

Increasing the auto exposure value increases the average brightness in the image and vice versa.

The applied algorithm uses a proportional plus integral controller (PI controller) to achieve minimum delay with zero overshot.

Register	Name	Field	Bit	Description
0xF0F0081C	SHUTTER	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the Value field 1: Control with value in the Absolute value CSR If this bit= 1 the value in the Value field will be ignored.
			[24]	Reserved
		One_Push	[5]	Write 1: begin to work (self-cleared after oper- ation) Read: 1: in operation 0: not in operation If A_M_Mode = 1, this bit will be ignored.
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status O: OFF 1: ON
		A_M_MODE	[7]	Write: set mode Read: read current mode 0: MANUAL 1: AUTO
			[819]	Reserved
		Value	[2031]	Read/Write Value
				This field is ignored when writing the value in Auto or OFF mode. If readout capability is not available, reading this field has no meaning.

To configure this feature in control and status register (CSR):

Table 25: CSR: Shutter

Configuration

Note

To configure this feature in an advanced register: See Table 104: Advanced register: **Auto shutter control** on page 192.

Note

- Values can only be changed within the limits of shutter CSR.
- Changes in auto exposure register only have an effect when auto shutter is enabled.
- Auto exposure limits are: 50..205 (SmartView→Ctrl1 tab: Target grey level)

When both auto shutter and auto gain are enabled, priority is given to increasing shutter when brightness decreases. This is done to achieve the best image quality with lowest noise.

For increasing brightness, priority is given to lowering gain first for the same purpose.

Auto gain

In combination with auto white balance, all Marlin models are equipped with **auto gain** feature.

When enabled auto gain adjusts the gain within the default gain limits (see Table 28: Manual gain range on page 69) or within the limits set in advanced register F1000370h in order to reach the brightness set in auto exposure register as reference.

Increasing the auto exposure value (aka target grey value) increases the average brightness in the image and vice versa.

The applied algorithm uses a proportional plus integral controller (PI controller) to achieve minimum delay with zero overshot.

The following table shows both the gain and auto exposure CSR.

Register	Name	Field	Bit	Description
0xF0F00820	GAIN	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the value field 1: Control with value in the absolute value CSR If this bit= 1 the value in the value field has to be ignored
			[24]	Reserved
		One_Push	[5]	Write: Set bit high to start Read: Status of the feature: Bit high: WIP Bit low: Ready
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status 0: OFF 1: ON
		A_M_MODE	[7]	Set bit high for Auto feature Read for Mode; 0= MANUAL; 1= AUTO
			[819]	Reserved
		Value	[2031]	Read/Write Value
				This field is ignored when writing the value in Auto or OFF mode.
				If readout capability is not available read- ing this field has no meaning

Table 26: CSR: Gain

Register	Name	Field	Bit	Description
0xF0F00804	AUTO_EXPOSURE	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
	Abs_Control	[1]	Absolute value control O: Control with value in the value field 1: Control with value in the absolute value CSR If this bit= 1 the value in the value field has to be ignored	
			[24]	Reserved
		One_Push	[5]	Write: Set bit high to star Read: Status of the feature:
				Bit high: WIP Bit low: Ready
		ON_OFF	[6]	Write: ON or OFF this feature
				Read: read a status
				0: OFF 1: ON
		A_M_MODE	[7]	Write: set mode Read: read current mode
				0: MANUAL 1: AUTO
			[819]	Reserved
	Value	[2031]	Read/Write Value	
				This field is ignored when writing the value in Auto or OFF mode.
				If readout capability is not available read- ing this field has no meaning

Table 27: CSR: Auto Exposure

Configuration

Note

To configure this feature in an advanced register: See Table 105: Advanced register: **Auto gain control** on page 193.

- Values can only be changed within the limits of gain CSR.
- Changes in auto exposure register only have an effect when auto gain is active.
- Auto exposure limits are 50..205. (SmartView→Ctrl1 tab: Target grey level)

Manual gain

Marlin cameras are equipped with a gain setting, allowing the gain to be **manually** adjusted on the fly by means of a simple command register write.

The following ranges can be used when manually setting the gain for the analog video signal:

Туре	Range	Range in dB
Marlin CCD cameras	0 680	0 24 dB

Table 28: Manual gain range

The increment length is ~0.0354 dB/step.

- Setting the gain does not change the offset (black value).
 - A higher gain also produces greater image noise. This reduces image quality. For this reason, try first to increase the brightness, using the aperture of the camera optics and/or longer shutter settings.

Brightness (black level or offset)

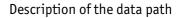
It is possible to set the black level in the camera within the following ranges:

0...+16 gray values (@ 8 bit)

Increments are in 1/16 LSB (@ 8 bit)

Note

• Setting the gain does not change the offset (black value).


The IIDC register brightness at offset 800h is used for this purpose. The following table shows the BRIGHTNESS register:

Marlin Technical Manual V.2.7.2

Register	Name	Field	Bit	Description
0xF0F00800	BRIGHTNESS	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the value field 1: Control with value in the absolute value CSR If this bit= 1 the value in the value field has to be ignored
			[24]	Reserved
		One_Push	[5]	Write: Set bit high to start Read: Status of the feature:
				Bit high: WIP
				Bit low: Ready
		ON_OFF	[6]	Write: ON or OFF this feature
				Read: read a status
				0: OFF 1: ON
		A_M_MODE	[7]	Write: set mode Read: read current mode
				0: MANUAL 1: AUTO
			[819]	Reserved
		Value	[2031]	Read/Write Value; this field is ignored when writing the value in Auto or OFF mode; if readout capability is not avail- able reading this field has no meaning.

Table 29: CSR: Brightness

Look-up table (LUT) and gamma function

The Marlin camera provides one user-defined look-up table (LUT). The use of this LUT allows any function (in the form Output = F(Input)) to be stored in the camera's RAM and to apply it on the individual pixels of an image at run-time.

The address lines of the RAM are connected to the incoming digital data, these in turn point to the values of functions which are calculated offline, e.g. with a spreadsheet program.

This function needs to be loaded into the camera's RAM before use.

One example of using a LUT is the gamma LUT:

 $Output = (Input)^{0.45}$

This is used with all Marlin models.

It is known as compensation for the nonlinear brightness response of many displays e.g. CRT monitors. The look-up table converts the most significant 10 bits from the digitizer to 8 bits. The gamma function is controlled by the register F0F00818h by toggling bit 6.

Output = (Input)^{gamma}

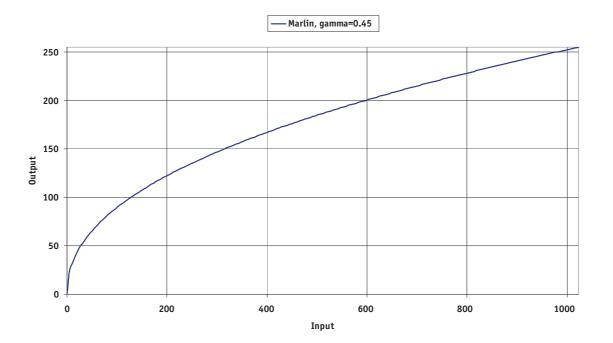


Figure 32: Gamma LUT

Note

- The input value is the most significant **10-bit** value from the digitizer. The gamma LUT of camera outputs the most significant 8 bit as shown above.
- As gamma correction is also implemented via the look-up table, it is not possible to use a different LUT when gamma correction is enabled.
- The user LUT will be overwritten when Gamma is enabled and vice versa.
- LUT content is by default volatile, use **user set functionality** to store the LUT permanently in the camera.

Loading an LUT into the camera

Loading the LUT is carried out through the data exchange buffer called GPDATA_BUFFER. As this buffer can hold a maximum of 2 kB, and a complete LUT at 1024 x 8 bit is 1 kB, programming can take place in a one block write step. The flow diagram below shows the sequence required to load data into the camera.

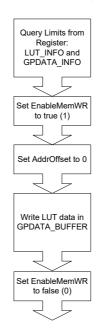


Figure 33: Loading an LUT

Note	Configuration
(i)	• To configure this feature in an advanced register: See Table 99: Advanced register: LUT on page 188.
$\mathbf{\Psi}$	 For information on GPDATA_BUFFER: See Chapter GPDATA_BUFFER on page 205.

Shading correction

Shading correction is used to compensate for non-homogeneities caused by lighting or optical characteristics within specified ranges.

To correct a frame, a multiplier from 1...2 is calculated for each pixel in 1/256 steps: this allows for shading to be compensated by up to 50 %.

Besides generating shading data off-line and downloading it to the camera, the camera allows correction data to be generated automatically in the camera itself.

Shading correction does not support the mirror function. If you use shading correction, don't change the mirror function.

How to store shading image

After generating the shading image in the camera, it can be uploaded to the host computer for nonvolatile storage purposes.

The following pictures describe the process of automatic generation of correction data. The line profiles were created using MVTEC's **ActivVision Tools**.

Profil					
255					
192 -					
128 -					
64					
10					
0	198 397	595	794	392	1191 1389
	198 397	595	794	392	1191 1389
0	198 397 JI545.635(595 Grav			1191 1389
0 Grauwerte		Grau		2	1191 1389

Figure 34: Shading correction: Source image with non-uniform illumination

- On the left you see the source image with non-uniform illumination.
- The graph on the right clearly shows the brightness level falling off to the right.

By defocusing the lens, high-frequency image data are removed from the source image, therefore its not included in the shading image.

Automatic generation of correction data

Requirements

Shading correction compensates for non-homogeneities by giving all pixels the same gray value as the brightest pixel. This means that only the background must be visible and the brightest pixel has a gray value of less than 255 when automatic generation of shading data is started.

It may be necessary to use a neutral white reference, e.g. a piece of paper, instead of the real image.

Algorithm

After the start of automatic generation, the camera pulls in the number of frames set in the GRAB_COUNT register. Recommended values are 4, 8 or 16. An arithmetic mean value is calculated from them (to reduce noise).

After this, a search is made for the brightest pixel in the mean value frame. A factor is then calculated for each pixel to be multiplied by, giving it the gray value of the brightest pixel.

All of these multipliers are saved in a **shading reference image**. The time required for this process depends on the number of frames to be calculated.

Correction alone can compensate for shading by up to 50 % and relies on 10 bit pixel data to avoid the generation of missing codes.

How to proceed:

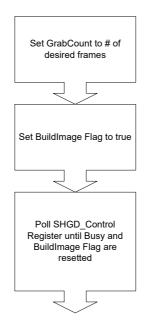
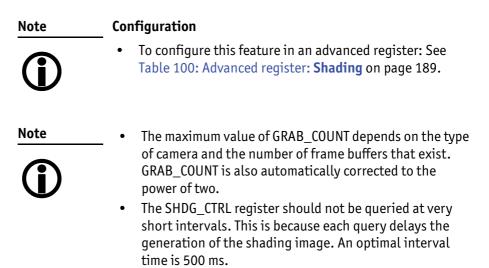
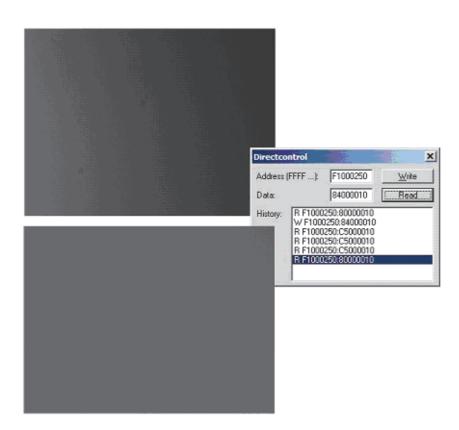



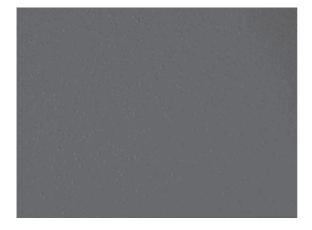
Figure 35: Automatic generation of a shading image

The following pictures illustrate the sequence of commands for generating the shading image.

The correction sequence controlled via **Directcontrol** uses the average of 16 frames (10H) to calculate the correction frame.

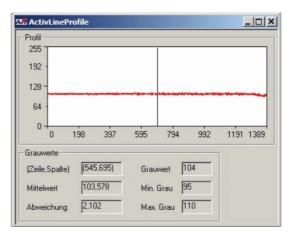
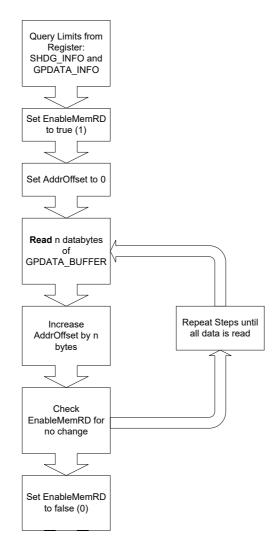
The top picture shows the input image (with lens out of focus). The bottom picture shows the shading corrected output image (unfocused lens).

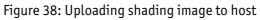



Figure 36: Generation of shading image

- The calculation of shading data is always carried out at the current resolution setting. If the AOI is later larger than the window in which correction data was calculated, none of the pixels lying outside are corrected.
- For Format_7 mode, it is advisable to generate the shading image in the largest displayable frame format. This ensures that any smaller AOIs are completely covered by the shading correction.
- The automatic generation of shading data can also be enabled when image capture is already running. The camera then pauses the running image capture for the time needed for generation and resumes after generation is completed.
- Shading correction can be combined with the Image mirror, binning and gamma functionality. Changing binning modes involve the generation of new shading reference images due to a change in the image size.

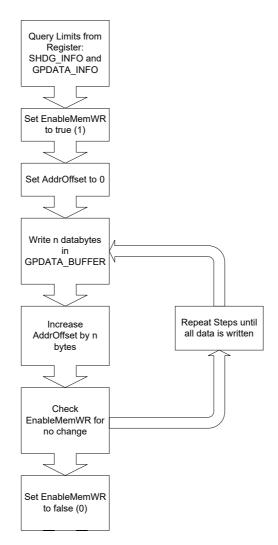
After the lens has been focused again the image below will be seen, but now with a considerably more uniform gradient. This is also made apparent in the graph on the right.

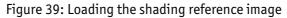




Figure 37: Example of shaded image

Loading a shading image out of the camera

GPDATA_BUFFER is used to load a shading image out of the camera. Because the size of a shading image is larger than GPDATA_BUFFER, input must be handled in several steps: It is recommended that block reads are used to read a block of n bytes with one command out of the GPDATA_BUFFER. With firmware 3.03 it is possible to read quadlets directly out of the buffer, but this takes much more time.


Configuration


- To configure this feature in an advanced register: See Table 100: Advanced register: **Shading** on page 189.
- For information on GPDATA_BUFFER: See Chapter GPDATA_BUFFER on page 205.

Loading a shading image into the camera

GPDATA_BUFFER is used to load a shading image into the camera. Because the size of a shading image is larger than GPDATA_BUFFER, input must be handled in several steps: It is recommended that block writes are used to write a block of n bytes with one command into the GPDATA_BUFFER. With firmware 3.03 it is possible to write quadlets directly into the buffer, but this takes much more time.

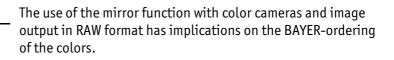
Configuration

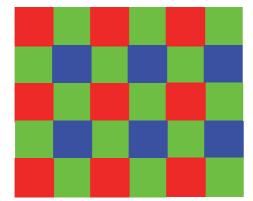
- To configure this feature in an advanced register: See Table 100: Advanced register: **Shading** on page 189.
- For information on GPDATA_BUFFER: See Chapter GPDATA_BUFFER on page 205.

Horizontal mirror function

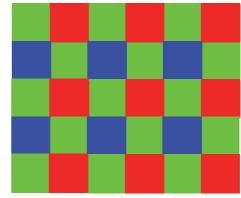
All Marlin cameras are equipped with an **electronic mirror function**, which mirrors pixels from the left side of the image to the right side and vice versa. The mirror is centered to the actual **FOV** center and can be combined with all image manipulation functions, like **binning** and **shading**.

This function is especially useful when the camera is looking at objects with the help of a mirror or in certain microscopy applications.


Configuration


î

To configure this feature in an advanced register: See Table 110: Advanced register: Mirror on page 196.


Note

(i)

Mirror ON: G-R-B-G (all Marlin color cameras)

Figure 40: Mirror and Bayer order

During switchover one image may be temporarily corrupted.

Note

Binning (only Marlin CCD b/w models)

2 x binning

Definition Binning is the process of combining neighboring pixels while being read out from the CCD chip.

Note

Only Marlin CCD equipped b/w cameras have this feature.

$(\mathbf{\hat{I}})$

Binning is used primarily for 3 reasons:

- A reduction in the number of pixels; thus, the amount of data while retaining the original image area angle
- An increase in the frame rate (vertical binning only)
- A brighter image, resulting in an improvement in the signal-to-noise ratio of the image (depending on the acquisition conditions)

Signal to noise ratio (SNR) and **signal to noise separation** specify the quality of a signal with regard to its reproduction of intensities. The value signifies how high the ratio of noise is in regard to the maximum wanted signal intensity expected.

The higher this value, the better the signal quality. The unit of measurement used is generally known as the decibel (dB), a logarithmic power level. 6 dB is the signal level at approximately a factor of 2.

However, the advantages of increasing signal quality are accompanied by a reduction in resolution.

Only Format_7 Binning is possible only in video Format_7. The type of binning used depends on the video mode.

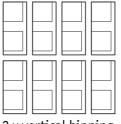
- Changing binning modes involve the generation of new shading reference images due to a change in the image size.

Note

- **Types** In general, we distinguish between the following types of binning (H=horizontal, V=vertical):
 - 2 x H-binning
 - 2 x V-binning

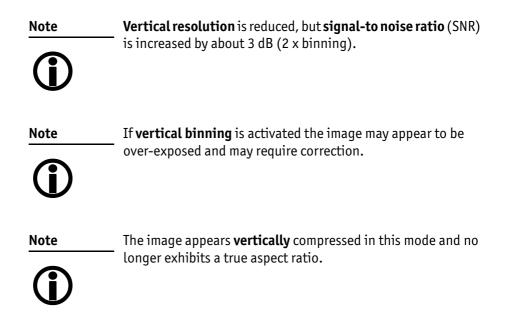
and the full binning modes:

2 x full binning (a combination of 2 x H-binning and 2 x V-binning)



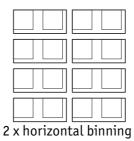
Vertical binning

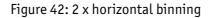
Vertical binning increases the light sensitivity of the camera by a factor of two by adding together the values of two adjoining vertical pixels output as a single pixel. At the same time this normally improves signal to noise separation by about 2 dB.

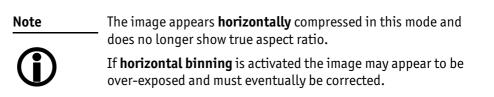

Format_7 Mode_2 By default use Format_7 Mode_2 for 2 x vertical binning.

This reduces vertical resolution, depending on the model.

2 x vertical binning

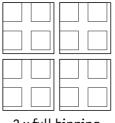

Figure 41: 2 x vertical binning

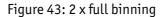




Horizontal binning

Definition	In horizontal binning adjacent horizontal pixels in a line are combined in pairs.
	2 x horizontal binning: 2 pixel signals from 2 horizontal neighboring pixels are combined.
Light sensitivity	This means that in horizontal binning the light sensitivity of the camera is also increased by a factor of two (6 dB). Signal to noise separation improves by approx. 3 dB . Horizontal resolution is lowered, depending on the model.
Horizontal resolution	Horizontal resolution is lowered, depending on the model.
Format_7 Mode_1	By default and without further remapping use Format_7 Mode_1 for 2 x horizontal binning.





2 x full binning

	If horizontal and vertical binning are combined, every 4 pixels are consolidated into a single pixel. At first two horizontal pixels are put together and then combined vertically.
Light sensitivity	This increases light sensitivity by a total of a factor of 4 and at the same time sig- nal to noise separation is improved by about 6 dB. Resolution is reduced, depending on the model.
Resolution	Resolution is reduced, depending on the model.
Format_7 Mode_3	By default use Format_7 Mode_3 for 2 x full binning.

Sub-sampling (Marlin F-146C and Marlin F-201C)

What is sub-sampling?

Definition Sub-sampling is the process of skipping neighboring pixels (with the same color) while being read out from the CCD chip.

Which Marlin models have sub-sampling?

• Marlin F-146C and Marlin F-201C are equipped with this mode, acting as a preview mode. Because it is realized digitally there is no further speed increase.

Description of sub-sampling

Sub-sampling is used primarily for the following reasons:

• A reduction in the number of pixels and thus the amount of data while retaining the original image area angle and image brightness

Similar to binning mode the cameras support horizontal, vertical and h+v subsampling mode.

Have a look at the following table to check availability of the different sub-sampling modes (h=horizontal, v=vertical).

Camera model	Sub-sampling h+v
MF-146C	Format_7 Mode_2
MF-201C	Format_7 Mode_2

Table 30: Sub-sampling mode for MF-146C and MF-201C

Format_7 Mode_2 By default use Format_7 Mode_2 for

• only Marlin F-146C/201C):

2 out of 4 H+V sub-sampling

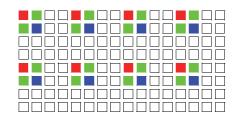


Figure 44: 2 out of 4 H+V sub-sampling (color)

Changing sub-sampling modes involve the generation of new shading reference images due to a change in the image size.

Parameter update timing

Marlin cameras show the following timing behavior:

- Frame rate or transfer rate is always constant (precondition: shutter < transfer time)
- The delay from shutter update until the change takes place: up to 3 frames. Figure 45: Marlin update timing on page 86 demonstrates this behavior. It shows that the camera receives a shutter update command while the sensor is currently integrating (Sync is low) with shutter setting 400. The camera continues to integrate and this image is output with the next FVal. The shutter change command becomes effective with the next falling edge of sync and finally the image taken with shutter 200 is output with a considerable delay.
- Parameters that are sent to the camera faster than the max. frame rate per second are stored in a FIFO and are activated in consecutive images.

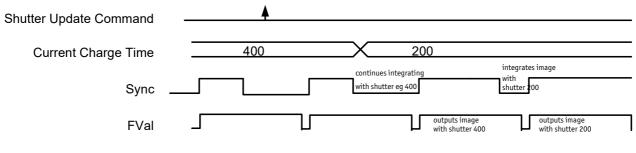


Figure 45: Marlin update timing

Principally a Marlin camera is not able to recognize how many parameter the user will change. Due to the fact that communication between host and camera is asynchronous, it may happen that one part of parameter changes is done in image n+1 and the other part is done in image n+2.

Sharpness

All Marlin color models are equipped with a two-step sharpness control, applying a discreet horizontal high pass in the green channel as shown in the next three line profiles.

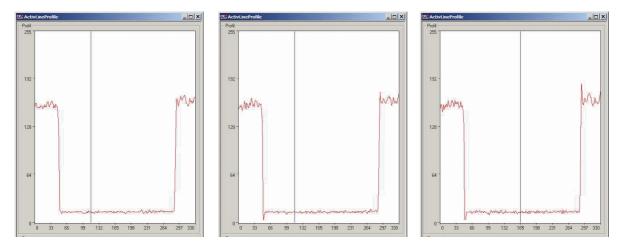


Figure 46: Sharpness: left: 0, middle: 1, right: 2

Configuration

To configure this feature in feature control register: See Table 86: Feature control register on page 172.

Color interpolation and correction

The color sensors capture the color information via so called primary color (R-G-B) filters placed over the individual pixels in a **BAYER mosaic** layout. An effective Bayer \rightarrow RGB color interpolation already takes place in all Marlin color version cameras. Before converting to the YUV format, color correction is done after BAYER demosaicing.

Color processing can be bypassed by using the so called RAW image transfer.

RAW mode is primarily used to

- save bandwidths on the IEEE 1394 bus
- achieve higher frame rates
- use different BAYER demosaicing algorithms on the PC

RAW-mode is accessible via Color_Mode Mono8, RAW8 and via Format_7 Mode_1.

Note

If the PC does not perform BAYER to RGB post-processing the b/w image will be superimposed with a checkerboard pattern.

Color interpolation (BAYER demosaicing)

In color interpolation a red, green or blue value is determined for each pixel. Only two lines are needed for this interpolation:

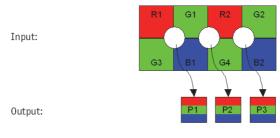


Figure 47: Bayer demosaicing (interpolation)

$P1_{red} = R1$	$P2_{red} = R2$	$P3_{red} = R2$
$P1_{green} = \frac{G1+G3}{2}$	$P2_{green} = \frac{G1+G4}{2}$	$P3_{green} = \frac{G2 + G4}{2}$
$P1_{blue} = B1$	P2 _{blue} = B1	$P3_{blue} = B2$

On the color camera, a wrongly colored border of one or two pixel wide forms on the left and right image borders. This is also a consequence of BAYER demosaicing as the image width displayed on the color camera is **not** scaled down.

Color correction

Why color correction

The spectral response of a CCD is different of those of an output device or the human eye. This is the reason for the fact that perfect color reproduction is not possible. In each Marlin camera there is a factory setting for the color correction coefficients, see Chapter GretagMacbeth ColorChecker on page 89.

Color correction is needed to eliminate the overlap in the color channels. This overlap is caused by the fact that:

- Blue light: is seen by the red and green pixels on the CCD
- Red light: is seen by the blue and green pixels on the CCD
- Green light: is seen by the red and blue pixels on the CCD

The color correction matrix subtracts out this overlap.

Color correction in Allied Vision cameras

In Allied Vision cameras the color correction is realized as an additional step in the process from the sensor data to color output.

Color correction is used to harmonize colors for the human eye. With Marlin (color) cameras you can use it or switch it off.

Color correction: formula

Color correction is performed on all Marlin color models before YUV conversion and mapped via a matrix as follows.

Formula 1: Color correction

GretagMacbeth ColorChecker

Sensor specific coefficients C_{xy} are scientifically generated to ensure that GretagMacbeth^ ColorChecker® colors are displayed with highest color fidelity and color balance.

Color correction is deactivated in Mono8 mode (RAW image transport).

Color correction can also be switched off in YUV mode with the help of the following register:

Note

Configuration

To configure this feature in an advanced register: See Table 108: Advanced register: **Color correction** on page 195.

Color-correction coefficients cannot be changed.

Color conversion (RGB \rightarrow YUV)

The conversion from RGB to YUV is made using the following formulae:

 $\begin{array}{ll} Y &=& 0.3 \times R + 0.59 \times G + & 0.11 \times B \\ U &=& -0.169 \times R - 0.33 \times G + 0.498 \times B + 128 \\ V &=& 0.498 \times R - 0.420 \times G - 0.082 \times B + 128 \end{array}$

Formula 2: RGB to YUV conversion

- As mentioned above: Color processing can be bypassed by using the so called RAW image transfer.
- RGB → YUV conversion can be bypassed by using RGB8 format and mode. This is advantageous for edge color definition but needs more bandwidth (300% instead of 200% relative to b/w or RAW consumption) for the transmission, so that the maximal frame frequency will drop.

Hue and saturation

Marlin CCD color models are equipped with hue and saturation registers.

The **hue register** at offset 810h allows to change the color of objects without changing the white balance by +/-40 steps ($+/-10^{\circ}$) from the nominal perception. Use this setting to manipulate the color appearance after having done the white balance.

The **saturation register** at offset 814h allows to change the intensity of the colors by +/-100%.

This means a setting of zero changes the image to black and white and a setting of 511 doubles the color intensity compared to the nominal one at 256.

Note

Configuration

To configure this feature in feature control register: See Table 86: Feature control register on page 172.

Description of the data path

Serial interface

With FW > 2.03, all Marlin cameras are equipped with the SIO (serial input/output) feature as described in IIDC V1.31. This means that the Marlin's serial interface which is used for firmware upgrades can further be used as a general RS232 interface.

Data written to a specific address in the IEEE 1394 address range will be sent through the serial interface. Incoming data of the serial interface is put in a camera buffer and can be polled via simple read commands from this buffer. Controlling registers enable the settings of baud rates and the check of buffer sizes and serial interface errors.

• Hardware handshaking is not supported.

Typical PC hardware does not usually support 230400 bps or more.

Base address for the function is: F0F02100h.

Offset	Name	Field	Bit	Description
000h	SERIAL_MODE_REG	Baud_Rate	[07]	Baud rate setting WR: Set baud rate RD: Read baud rate 0: 300 bps 1: 600 bps 2: 1200 bps 3: 2400 bps 4: 4800 bps 5: 9600 bps 6: 19200 bps 7: 38400 bps 8: 57600 bps 9: 115200 bps 10: 230400 bps Other values reserved
		Char_Length	[815]	Character length setting WR: Set data length (7 or 8 bit) RD: Get data length 7: 7 bit 8: 8 bit Other values reserved
		Parity	[1617]	Parity setting WR: Set parity RD: Get parity setting 0: None 1: Odd 2: Even
		Stop_Bit	[1819]	Stop bits WR: Set stop bit RD: Get stop bit setting 0: 1 1: 1.5 2: 2
			[2023]	Reserved
		Buffer_Size_Inq	[2431]	Buffer Size (RD only) This field indicates the maximum size of receive/transmit data buffer If this value=1, Buffer_Status_Control and SIO_Data_Register Char 1-3 should be ignored.

To configure this feature in access control register (CSR):

Table 31: Serial input/output control and status register (SIO CSR)

Offset Name	Field	Bit	Description
0004h SERIAL_CONTRO	L_REG RE	[0]	Receive enable RD: Current status WR: O: Disable 1: Enable
	TE	[1]	Transmit enable RD: Current status WR: O: disable 1: Enable
		[27]	Reserved
SERIAL_STATUS_	_REG TDRD	[8]	Transmit data buffer ready Read only O: not ready 1: ready
		[9]	Reserved
	RDRD	[10]	Receive data buffer ready Read only O: not ready 1: ready
		[11]	Reserved
	ORER	[12]	Receive data buffer overrun error Read: current status WR: O: no error (to clear status) 1: Ignored
	FER	[13]	Receive data framing error Read: current status WR: O: no error (to clear status) 1: Ignored
	PER	[14]	Receive data parity error Read: current status WR: O: no error (to clear status) 1: Ignored
		[1531]	Reserved

Table 31: Serial input/output control and status register (SIO CSR)

Offset	Name	Field	Bit	Description
008h	RECEIVE_BUFFER_ STATUS_CONTRL	RBUF_ST	[07]	SIO receive buffer status RD: Number of bytes pending in receive buffer WR: Ignored
		RBUF_CNT	[815]	SIO receive buffer control WR: Number of bytes to be read from the receive FIFO RD: Number of bytes left for readout from the receive FIFO
			[1631]	Reserved
00Ch	TRANSMIT_BUFFER_ STATUS_CONTRL	TBUF_ST	[07]	SIO output buffer status RD: Space left in TX buffer WR: Ignored
		TBUF_CNT	[815]	SIO output buffer control RD: Number of bytes written to transmit FIFO WR: Number of bytes to transmit
			[1631]	Reserved
010h 0FFh				Reserved
100h	SIO_DATA_REGISTER	CHAR_0	[07]	Character_0 RD: Read character from receive buffer WR: Write character to transmit buffer
	SIO_DATA_REGISTER	CHAR_1	[815]	Character_1 RD: Read character from receive buffer+1 WR: Write character to transmit buffer+1
	SIO_DATA_REGISTER	CHAR_2	[1623]	Character_2 RD: Read character from receive buffer+2 WR: Write character to transmit buffer+2
	SIO_DATA_REGISTER	CHAR_3	[2431]	Character_3 RD: Read character from receive buffer+3 WR: Write character to transmit buffer+3

Table 31: Serial input/output control and status register (SIO CSR)

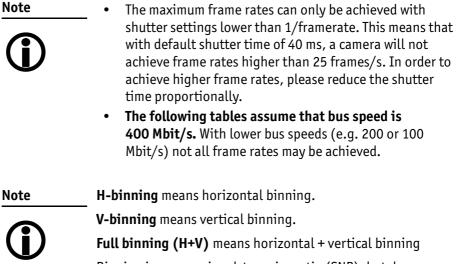
To read data:

- 1. Query RDRD flag (buffer ready?) and write the number of bytes the host wants to read to RBUF_CNT.
- Read the number of bytes pending in the receive buffer RBUF_ST (more data in the buffer than the host wanted to read?) and the number of bytes left for reading from the receive FIFO in RBUF_CNT (host wanted to read more data than were in the buffer?).
- 3. Read received characters from SIO_DATA_REGISTER, beginning at char 0.
- 4. To input more characters, repeat from step 1.

To write data:

- 1. Query TDRD flag (buffer ready?) and write the number of bytes to send (copied from SIO register to transmit FIFO) to TBUF_CNT.
- Read the available data space left in TBUF_ST (if the buffer can hold more bytes than are to be transmitted) and number of bytes written to transmit buffer in TBUF_CNT (if more data is to be transmitted than fits in the buffer).
- 3. Write character to SIO_DATA_REGISTER, beginning at char 0.
- 4. To output more characters, repeat from step 1.

- Contact your local dealer if you require further information or additional test programs or software.
- Allied Vision recommends the use of Hyperterminal[™] or other communication programs to test the functionality of this feature. Alternatively use SmartView to try out this feature.



Video formats, modes and bandwidth

The different Marlin models support different video formats, modes and frame rates.

These formats and modes are standardized in the IIDC (formerly DCAM) specification.

Resolutions smaller than the generic sensor resolution are generated from the center of the sensor and without binning.

Binning increases signal-to-noise ratio (SNR), but decreases resolution.

Marlin F-033B/ Marlin F-033C

Format	Mode	Resolution	Color mode	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	160 x 120	YUV444						
	1	320 x 240	YUV422						
	2	640 x 480	YUV411	×	x	x	X	x	
0	3	640 x 480	YUV422		×	x	x	×	
	4	640 x 480	RGB8		×	x	x	×	
	5	640 x 480	Mono8	x x*	x x*	x	x x*	x x*	
	6	640 x 480	Mono16		х	х	х	х	

Table 32: Video fixed formats Marlin F-033B / F-033C

*: Color camera outputs RAW image, which needs to be converted outside of camera.

Format	Mode	Resolution	Color mode	Maximal S400 frame rates for Format_7 modes
	0	656 x 494	Mono8 Mono16	73.06 fps 50.16 fps
		656 x 492	YUV411 YUV422 RGB8 Mono8 (RAW8)	66.95 fps 50.47 fps 33.68 fps 73.73 fps
7	1	328 x 494	Mono8 Mono16	73.06 fps H-binning 73.06 fps H-binning 73.06 fps Baw Bayer pattern
	2	656 x 246	Mono8 (RAW8) Mono8	73.06 fpsRaw Bayer pattern128.00 fpsV-binning
			Mono16	100.63 fps V-binning
	3	328 x 246	Mono8	128.00 fps H+V binning

Table 33: Video Format_7 default modes Marlin F-033B / F-033C

Marlin F-046B/ Marlin F-046C

Format	Mode	Resolution	Color mode	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	160 x 120	YUV444						
	1	320 x 240	YUV422		x	x	x	x	x
	2	640 x 480	YUV411		x	X	x	x	
0	3	640 x 480	YUV422		x	x	x	x	
	4	640 x 480	RGB8		x	x	x	x	
	5	640 x 480	Mono8	x x*	x x*	x x*	x x*	x x*	
	6	640 x 480	Mono16		x	х	х	х	

Table 34: Video formats Marlin F-046B / F-046C

*: Color camera outputs RAW image, which needs to be converted outside of camera.

Format	Mode	Resolution	Color mode	Maximal S400 frame rates for Format_7 modes
	0	780 x 582	Mono8 Mono16	52.81 fps 35.96 fps
		780 x 580	YUV411 YUV422 RGB8 Mono8 (RAW8)	48.05 fps 36.12 fps 24.06 fps 52.81 fps
7	1	388 x 582 780 x 582	Mono8 Mono16 Mono8 (RAW8)	52.81 fps H-binning 52.81 fps H-binning 52.81 fps Raw Bayer pattern
	2	780 x 290	Mono8 Mono16	92.49 fps V-binning 71.75 fps V-binning
	3	388 x 290	Mono8 Mono16	92.49 fps H+V binning 92.49 fps H+V binning

Table 35: Video Format_7 default modes Marlin F-046B / F-046C

Format	Mode	Resolution	Color mode	60 fps	30 fps	15 fps	7.5 fps	5 3.75 fps	1.875 fps
	0	160 x 120	YUV444						
	1	320 x 240	YUV422		х	x	x	X	
	2	640 x 480	YUV411		х	х	x	X	
0	3	640 x 480	YUV422		х	x	Х	X	
	4	640 x 480	RGB8			x	x	X	
	5	640 x 480	Mono8		x x*	x x*	x	x x*	
	6	640 x 480	Mono16		х	x	х	х	
	0	800 x 600	YUV422			x	X	X	
	1	800 x 600	RGB8			x	×		
	2	800 x 600	Mono8			x x*	x		
1	3	1024 x 768	YUV422			×*	x*	X*	
	4	1024 x 768	RGB8				X*	X*	
	5	1024 x 768	Mono8			x x*	x x*	x x*	
	6	800 x 600	Mono16			х	х		
	7	1024 x 768	Mono16			х	х	х	

Marlin F-080B/ Marlin F-080C (-30 fps)

Table 36: Video fixed formats Marlin F-080B / F-080C (-30 fps)

*: Color camera outputs RAW image, which needs to be converted outside of camera.

Format	Mode	Resolution	Color mode	Maximal S400 frame rates for Format_7 modes
	0	1032 x 778	Mono8	20.08 fps (30.13 fps**)
			Mono16	20.08 fps (20.33 fps**)
		1032 x 776	YUV411	20.08 fps (27.16 fps**)
			YUV422	20.13 fps (20.38 fps**)
			RGB8	13.57 fps (13.57 fps**)
			Mono8 (RAW8)	20.08 fps (30.13 fps**)
7	1	516 x 778	Mono8	20.03 fps (30.13 fps**) H-binning
,			Mono16	20.08 fps (30.13 fps**) H-binning
		1032 x 778	Mono8 (RAW8)	20.13 fps (30.13 fps**) Raw Bayer pattern
	2	1032 x 388	Mono8	35.48 fps (53.16 fps**) V-binning
			Mono16	35.48 fps (40.17 fps**) V-binning
	3	516 x 388	Mono8	35.48 fps (53.16 fps**) H+V binning
			Mono16	35.48 fps (53.16 fps**) H+V binning

Table 37: Video Format_7 default modes Marlin F-080B / F-080C (-30 fps)

30 fps column applying to this variant only. ** applying to 30 fps variant only

Marlin F-145B2/ Marlin F-145C2

Format	Mode	Resolution	Color mode	60	fps 30	fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	160 x 120	YUV444							
	1	320 x 240	YUV422							
	2	640 x 480	YUV411				x	x	Х	
0	3	640 x 480	YUV422				х	х	Х	
	4	640 x 480	RGB8				х	х	х	
	5	640 x 480	Mono8				x x*	x x*	x x*	
	6	640 x 480	Mono16				х	х	x	
	0	800 x 600	YUV422				x	x	x	
	1	800 x 600	RGB8				х	x		
	2	800 x 600	Mono8				x	x x*		
	3	1024 x 768	YUV422					x	х	
1	4	1024 x 768	RGB8					x	х	
	5	1024 x 768	Mono8					x x*	x	
	6	800 x 600	Mono16				x	x		
	7	1024 x 768	Mono16					х	х	
		*		ł	·					•
	0	1280 x 960	YUV422					x	Х	Х
	1	1280 x 960	RGB8					x	х	X
	2	1280 x 960	Mono8					x x*	x x*	x x*
2	3	1600 x 1200	YUV422							
2	4	1600 x 1200	RGB8							
	5	1600 x 1200	Mono8							
	6	1280 x 960	Mono16					x	х	x
	7	1600 x 1200	Mono16							

Table 38: Video fixed formats Marlin F-145B2 / F-145C2

*: Color camera outputs RAW image, which needs to be converted outside of camera.

Format	Mode	Resolution	Color mode	Maximal	S400 frame rates for Format_7 modes
	0	1392 x 1040	Mono8 Mono16	10 fps 10 fps	
		1392 x 1038	YUV411 YUV422 RGB8 RAW8	10 fps 10 fps 7.5 fps 10 fps	
7	1	696 x 1040	Mono8 Mono16	10 fps 10 fps	H-binning H-binning
7		1392 x 1040	Mono8 (RAW)	10 fps	Raw Bayer pattern
	2	1392 x 520	Mono8 Mono16	17 fps 17 fps	V-binning V-binning
		696 x 518	YUV411 YUV422 RGB8 RAW8	10 fps 10 fps 10 fps 10 fps	H+V sub-sampling H+V sub-sampling H+V sub-sampling H+V sub-sampling
	3	696 x 520	Mono8	17 fps	H+V binning

Table 39: Video Format_7 default modes Marlin F-145B / F-145C

Owing to color interpolation, the maximum height is 1036 pixels in YUV modes and the first and last pixel columns contain no image information.

Marlin F-146B / Marlin F-146C

Format	Mode	Resolution	Color mode	60	fps	30 fps	; 15 fps	7.5 fps	s 3.75 fps	1.875 fps
	0	160 x 120	YUV444							
	1	320 x 240	YUV422			Х	х	X	Х	
	2	640 x 480	YUV411			Х	х	X	Х	
0	3	640 x 480	YUV422			Х	х	X	Х	
	4	640 x 480	RGB8			Х	х	×	Х	
	5	640 x 480	Mono8			x	x x*	x	x	
	6	640 x 480	Mono16			х	x	х	x	
	0	800 x 600	YUV422				х	×	Х	
	1	800 x 600	RGB8				X	×		
	2	800 x 600	Mono8				x	x x*		
1	3	1024 x 768	YUV422				X	×	Х	
T	4	1024 x 768	RGB8					x	Х	
	5	1024 x 768	Mono8				x x*	x x*	x x*	
	6	800 x 600	Mono16				х	x		
	7	1024 x 768	Mono16				х	х	х	
								-		-
	0	1280 x 960	YUV422					×	х	x
	1	1280 x 960	RGB8					×	×	X
	2	1280 x 960	Mono8				x	x x*	x	x
2	3	1600 x 1200	YUV422							
	4	1600 x 1200	RGB8							
	5	1600 x 1200	Mono8							
	6	1280 x 960	Mono16					х	Х	х
	7	1600 x 1200	Mono16							

Table 40: Video fixed formats Marlin F-146B / F-146C

*: Color camera outputs RAW image, which needs to be converted outside of camera.

Format	Mode	Resolution	Color mode	Maximal S400 frame rates for Format_7 modes
	0	1392 x 1040	Mono8 Mono16	17.43 fps 11.32 fps
		1392 x 1038	YUV411 YUV422 RGB8 RAW8	15.1 fps 11.3 fps 7.55 fps 17.47 fps
7	1	696 x 1040 1392 x 1040	Mono8 Mono16 Mono8 (RAW)	17.43 fps H-binning 17.43 fps H-binning 17.43 fps
	2	1392 x 520 696 x 518	Mono16 YUV411 YUV422 RGB8 RAW8	22.6 fpsV-binning17.51 fpsH+V sub-sampling17.47 fpsH+V sub-sampling17.51 fpsH+V sub-sampling17.47 fpsH+V sub-sampling17.47 fpsH+V sub-sampling
	3	696 x 520	Mono8 Mono16	28.57 fps H+V binning 28.57 fps H+V binning

Table 41: Video Format_7 default modes Marlin F-146B / F-146C

Owing to color interpolation, the maximum height is 1038 pixels in YUV modes and the first and last one or two pixel columns contain incorrect color information.

In Format_7 maximum frame rates are given. Precise lowering is possible with lower packet size setting.

Marlin F-201B / Marlin F-201C

Format	Mode	Resolution	Color mode	60	fps	30	fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	160 x 120	YUV444								
	1	320 x 240	YUV422)	x	х	х	Х	
	2	640 x 480	YUV411					Х	х	Х	
0	3	640 x 480	YUV422					X	х	Х	
	4	640 x 480	RGB8					X	х	Х	
	5	640 x 480	Mono8					x x*	x x*	x	
	6	640 x 480	Mono16					х	х	х	
	0	800 x 600	YUV422					X	х	Х	
	1	800 x 600	RGB8					x	x		
	2	800 x 600	Mono8					x x*	x x*		
1	3	1024 x 768	YUV422					x	x	Х	
T	4	1024 x 768	RGB8						х	Х	
	5	1024 x 768	Mono8					x	x x*	x	
	6	800 x 600	Mono16					х	х		
	7	1024 x 768	Mono16						х	х	
			-								
	0	1280 x 960	YUV422						х	Х	Х
	1	1280 x 960	RGB8						x	Х	Х
	2	1280 x 960	Mono8					x	x	x	x
2	3	1600 x 1200	YUV422						x	x	x
Ĺ	4	1600 x 1200	RGB8								
	5	1600 x 1200	Mono8						x	x x*	x x*
	6	1280 x 960	Mono16						х	х	
	7	1600 x 1200	Mono16								

Table 42: Video fixed formats Marlin F-201B / F-201C

*: Color camera outputs RAW image, which needs to be converted outside of camera.

Format	Mode	Resolution	Color mode	Maximal S400 frame rates for Format_7 modes
	0	1628 x 1236	Mono8 Mono16	12.48 fps 8.14 fps
		1628 x 1234	YUV411 YUV422 RGB8 RAW8	10.87 fps 8.15 fps 5.43 fps 12.52 fps
	1	812 x 1236	Mono8 Mono16	12.48 fps H-binning 12.48 fps H-binning
7		1628 x 1236	Mono8 (RAW)	12.48 fps
	2	1628 x 618	Mono8 Mono16	22.35 fps V-binning 16.26 fps V-binning
		812 x 616	YUV411 YUV422 RGB8 RAW8	 12.54 fps H+V sub-sampling 12.54 fps H+V sub-sampling 12.54 fps H+V sub-sampling 12.54 fps H+V sub-sampling
	3	812 x 618	Mono8 Mono16	12.47 fps H+V binning 12.47 fps H+V binning

Table 43: Video Format_7 default modes Marlin F-201B / F-201C

Area of interest (AOI)

The camera's image sensor has a defined resolution. This indicates the maximum number of lines and pixels per line that the recorded image may have.

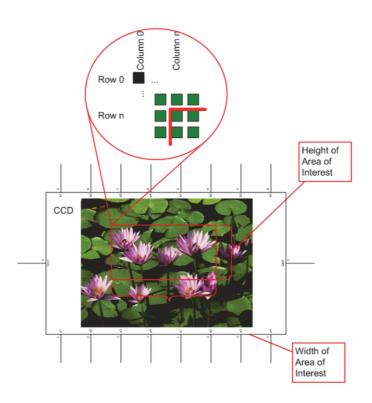
However, often only a certain section of the entire image is of interest. The amount of data to be transferred can be decreased by limiting the image to a section when reading it out from the camera. At a lower vertical resolution the sensor can be read out faster and thus the frame rate is increased.

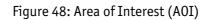
Note

The setting of AOIs is supported only in video Format_7.

While the size of the image read out for most other video formats and modes is fixed by the IIDC specification, thereby determining the highest possible frame rate, in Format_7 mode the user can set the **upper left corner** and **width and height** of the section (area of interest = AOI) he is interested in to determine the size and thus the highest possible frame rate.

Setting the AOI is done in the IMAGE_POSITION and IMAGE_SIZE registers.


Attention should be paid to the increments entered in the UNIT SIZE INQ and UNIT_POSITION_INQ registers when configuring IMAGE_POSITION and IMAGE_-SIZE.


IMAGE_POSITION and IMAGE_SIZE contain in the respective bits values for the column and line of the upper left corner and values for the width and height.

For more information see Table 88: Format 7 control and status register on page 176.

- The left position + width and the upper position + height may not exceed the maximum resolution of the sensor.
- The coordinates for width and height must be divisible by 4.

In addition to the area of interest, some other parameters have an effect on the maximum frame rate:

- The time for reading the image from the sensor and transporting it into the FRAME_BUFFER
- The time for transferring the image over the FireWire[™] bus
- The length of the exposure time.

Autofunction AOI

Use this feature to select the image area (work area) on which the following autofunctions work:

- Auto shutter
- Auto gain
- Auto white balance

In the following screenshot you can see an example of the autofunction AOI:

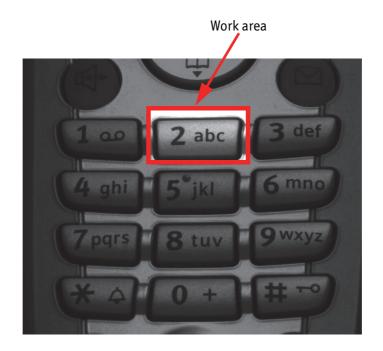
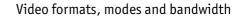



Figure 49: Example of autofunction AOI (*Show work area* is on)

Autofunction AOI is independent from Format_7 AOI settings.

()

Note

If you switch off autofunction AOI, work area position and work area size follow the current active image size.

To switch off autofunctions, carry out following actions in the order shown:

1. Uncheck Show AOI check box (SmartView Ctrl2 tab).

2. Uncheck **Enable** check box (SmartView **Ctrl2** tab). Switch off Auto modi (e.g. **Shutter** and/or **Gain**) (SmartView **Ctrl2** tab).

As a reference it uses a grid of at least 300 sample points equally spread over the AOI.

Note

To configure this feature in an advanced register see Table 106: Advanced register: **Autofunction AOI** on page 194.

Frame rates

An IEEE 1394 camera requires bandwidth to transport images.

The IEEE 1394a bus has very large bandwidth of at least 32 Mbyte/s for transferring (isochronously) image data. Per cycle up to 4096 bytes (or around 1000 quadlets = 4 bytes @ 400 Mbit/s) can thus be transmitted.

Note

All bandwidth data is calculated with:

1 MByte = 1024 kByte

Depending on the video format settings and the configured frame rate, the camera requires a certain percentage of maximum available bandwidth. Clearly the bigger the image and the higher the frame rate, there is more data to be transmitted.

The following tables indicate the volume of data in various formats and modes to be sent within one cycle (125 μ s) at 400 Mbit/s of bandwidth.

The tables are divided into three formats:

Format	Resolution	Max. video format
Format_0	up to VGA	640 x 480
Format_1	up to XGA	1024 x 768
Format_2	up to UXGA	1600 x 1200

Table 44: Overview fixed formats

They enable you to calculate the required bandwidth and to ascertain the number of cameras that can be operated independently on a bus and in which mode.

Format	Mode	Resolution	60 fps	30 fps	15 fps	7.5 fps	3.75 fps
	0	160 x 120 YUV444 24 bit/pixel		1/2H 80p 60q	1/4H 40p 30q	1/8H 20p 15q	
	1	320 x 240 YUV422 16 bit/pixel		1H 320p 160q	1/2H 160p 80q	1/4H 80p 40q	1/8H 40p 20q
	2	640 x 480 YUV411 12 bit/pixel		2H 1280p 480q	1H 640p 240q	1/2H 320p 120q	1/4H 160p 60q
0	3	640 x 480 YUV422 16 bit/pixel		2H 1280p 640q	1H 640p 320q	1/2H 320p 160q	1/4H 160p 80q
	4	640 x 480 RGB 24 bit/pixel		2H 1280p 960q	1H 640p 480q	1/2H 320p 240q	1/4H 160p 120q
	5	640 x 480 (Mono8) 8 bit/pixel	4H 2560p 640q	2H 1280p 320q	1H 640p 160q	1/2H 320p 80q	1/4H 160 p40q
	6	640 x 480 Y (Mono16) 16 bit/pixel		2H 1280p 640q	1H 640p 320q	1/2H 320p 160q	1/4H 160p 80q
	7	640 x 480 Y (Mono16) Reserved					

Table 45: Format_0

As an example, VGA Mono8 @ 60 fps requires four lines (640 x 4 = 2560 pixels/ byte) to transmit every 125 μ s: this is a consequence of the sensor's line time of about 30 μ s, so that no data needs to be stored temporarily. It takes 120 cycles (120 x 125 μ s = 15 ms) to transmit one frame, which arrives every 16.6 ms from the camera. Again no data need to be stored temporarily.

Thus around 64 % of the available bandwidth is used.

Format	Mode	Resolution	60 fps	30 fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	800 x 600 YUV422 16 bit/pixel		5/2H 2000p 1000q	5/4H 1000p 500q	5/8H 500p 250q	6/16H 250p 125q	
	1	800 x 600 RGB 24 bit/pixel			5/4H 1000p 750q	5/8H 500p 375q		
	2	800 x 600 Y (Mono8) 8 bit/pixel	5H 4000p 1000q	5/2H 2000p 500q	5/4H 1000p 250q	5/8H 500p 125q		
1	3	1024 x 768 YUV422 16 bit/pixel			3/2H 1536p 768q	3/4H 768p 384q	3/8H 384p 192q	3/16H 192p 96q
1	4	1024 x 768 RGB 24 bit/pixel				3/4H 768p 576q	3/8H 384p 288q	3/16H 192p 144q
	5	1024 x 768 Y (Mono8) 8 bit/pixel		3H 3072p 768q	3/2H 1536p 384q	3/4H 768p 192q	3/8H 384p 96q	3/16H 192p 48q
	6	800 x 600 (Mono16) 16 bit/pixel		5/2H 2000p 1000q	5/4H 1000p 500q	5/8H 500p 250q	5/16H 250p 125q	
	7	1024 x 768 Y (Mono16) 16 bit/pixel			3/2H 1536p 768q	3/4H 768p 384q	3/8H 384p 192q	3/16H 192p 96q

Table 46: Format_1

Format	Mode	Resolution	60	fps	30	fps	15 fps	7.5 fps	3.75 fps	1.875 fps
	0	1280 x 960 YUV422 16 bit/pixel					1H 1280p 640q	1/2H 640p 320q	1/4H 320p 160q	
	1	1280 x 960 RGB 24 bit/pixel						1H 1280p 960q	1/2H 640p 480q	1/4H 320p 240q
	2	1280 x 960 Y (Mono8) 8 bit/pixel					2H 2560p 640q	1H 1280p 320q	1/2H 640p 160q	1/4H 320p 80q
2	3	1600 x 1200 YUV422 16 bit/pixel						5/4H 2000p 1000q	5/8H 1000p 500q	5/16H 500p 250q
	4	1600 x 1200 RGB 24 bit/pixel							5/8H 1000p 750q	5/16 500p 375q
	5	1600 x 1200 Y (Mono8) 8 bit/pixel					5/2H 4000p 1000q	5/4H 2000p 500q	5/8H 1000p 250q	5/16H 500p 125q
	6	1280 x 960 Y (Mono16) 16 bit/pixel						1H 1280p 640q	1/2H 640p 320q	1/4H 320p 160q
	7	1600 x 1200 Y (Mono16) 16 bit/pixel						5/4H 2000p 1000q	5/8H 1000p 500q	5/16H 500p 250q

Table 47: Format_2

As already mentioned, the recommended limit for transferring isochronous image data is 1000q (quadlets) per cycle or 4096 bytes (with 400 Mbit/s of bandwidth).

The third table shows that a MF-145B2 @ 7.5 fps has to send 1280 pixels or 1 line of video per cycle. The camera thus uses 32 % of available bandwidth. This allows up to three cameras with these settings to be operated independently on the same bus.

Note

- If the cameras are operated with an external trigger the maximum trigger frequency may not exceed the highest continuous frame rate, so preventing frames from being dropped or corrupted.
- IEEE 1394 adapter cards with PCILynx[™] chipsets have a limit of 4000 bytes per cycle.

The frame rates in video modes 0 to 2 are specified and set fixed by IIDC V1.3.

Frame rates Format_7

In video Format_7 frame rates are no longer fixed but can be varied dynamically by the parameters described below.

• Different values apply for the different sensors.

Frame rates may be further limited by longer shutter times and/or bandwidth limitation from the IEEE 1394 bus.

The following formula is used to calculate for the CCD models the highest frame rate in Format_7:

$$framerate_{In} = framerate_{CCD} = \frac{1}{T_{ChargeTrans} + T_{Dummy} + T_{Dump} + T_{Scan}}$$

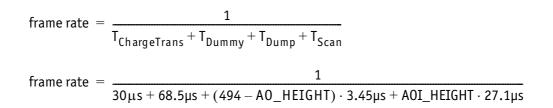
Formula 3: Frame rate calculation

It assumes that the maximum frame rate is the inverse of the sum of all events in a CCD, which take time such as:

- The time to transfer the storage to the vertical shift register (Charge transfer time)
- The time to shift out the dummy lines
- The time to dump the lines outside the AOI
- The time to shift out the lines of the AOI. (Scanning time)

Details are described in the next chapters:

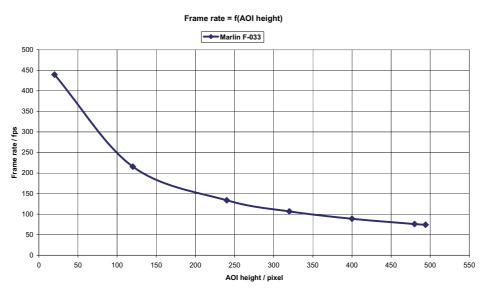
- Max. frame rate of CCD (theoretical formula)
- Diagram of frame rates as function of AOI by constant width
- Table with max. frame rates as function of AOI by constant width

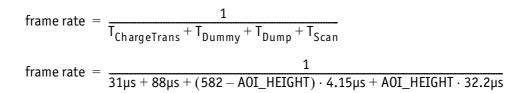

Note

Different parameters apply for different models.

Marlin F-033: AOI frame rates

Formula 4: Frame rate calculation Marlin F-033 as function of AOI height




Figure 50: Frame rates Marlin F-033 as function of AOI height

AOI height / pixel	Frame rate / fps	T _{frame} / ms	
494	74.15	13.49	
480	76.02	13.15	
400	88.79	11.26	
320	106.71	9.37	
240	133.71	7.48	
120	215.48	4.64	
20	439.41	2.28	

Table 48: Frame rates Marlin F-033 as function of AOI height

Marlin F-046: AOI frame rates

Formula 5: Frame rate calculation Marlin F-046 as function of AOI height

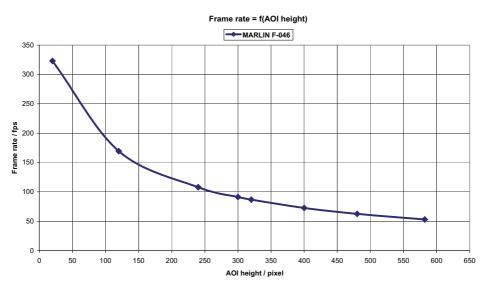


Figure 51: Frame rates Marlin F-046 as function of AOI height

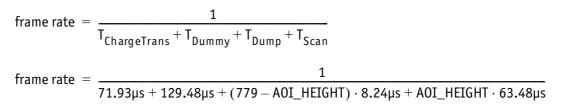

AOI height / pixel	Frame rate / fps	T _{frame} / ms
582	53.02	18.86
480	62.51	16.00
400	72.70	13.75
320	86.88	11.51
300	91.33	10.95
240	107.92	9.27
120	169.48	5.90
20	323.07	3.10

Table 49: Frame rates Marlin F-046 as function of AOI height

Video formats, modes and bandwidth

Marlin F-080: AOI frame rates

Formula 6: Frame rate calculation Marlin F-080 as function of AOI height

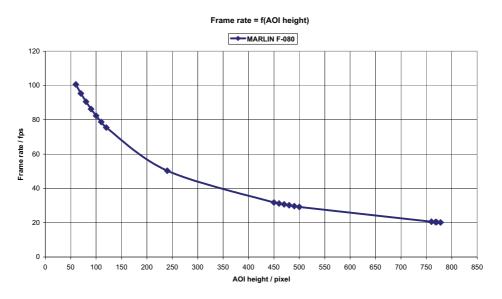


Figure 52: Frame rates Marlin F-080 as function of AOI height

AOI height	Frame rate / fps	T _{frame} / ms	
778	20.16	49.60	
770	20.34	49.16	
768	20.39	49.04	
760	20.57	48.60	
500	29.21	34.24	
490	29.68	33.69	
480	30.18	33.14	
470	30.69	32.58	
460	31.22	32.03	
450	31.77	31.48	

Table 50: Frame rates Marlin F-080 as function of AOI height

Marlin Technical Manual V.2.7.2

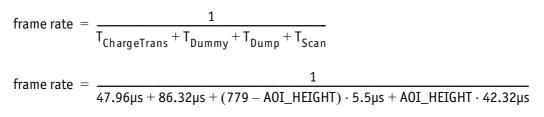
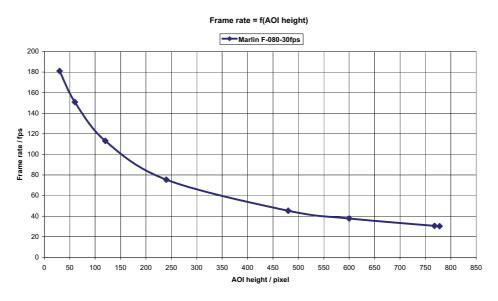

A0I height	Frame rate / fps	T _{frame} / ms	
240	50.31	19.88	
120	75.48	13.25	
110	78.76	12.70	
100	82.34	12.14	
90	86.27	11.59	
80	90.58	11.04	
70	95.35	10.49	
60	100.66	9.93	

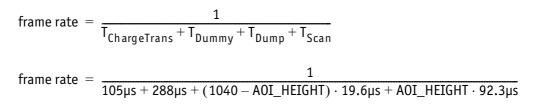
Table 50: Frame rates Marlin F-080 as function of AOI height

Video formats, modes and bandwidth

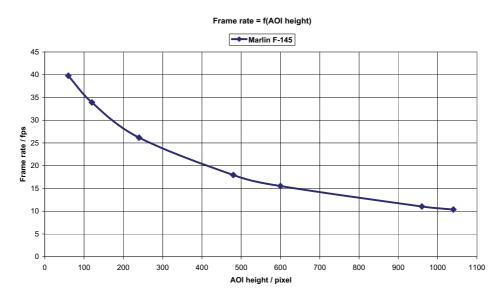
Marlin F-080-30 fps: AOI frame rates

Formula 7: Frame rate calculation Marlin F-080-30 fps as function of AOI height




Figure 53: Frame rates of Marlin F-080-30 fps as function of AOI height

AOI height	Frame rate / fps	T _{frame} / ms	
778	30.24	33.06	
768	30.58	32.70	
600	37.72	26.51	
480	45.26	22.09	
240	75.44	13.26	
120	113.16	8.84	
60	150.88	6.63	
30	181.05	5.52	


Table 51: Frame rates of Marlin F-080-30 fps as function of AOI height

Marlin F-145: AOI frame rates

Formula 8: Frame rate calculation Marlin F-145 as function of AOI height

Figure 54: Frame rates Marlin F-145 as function of AOI height

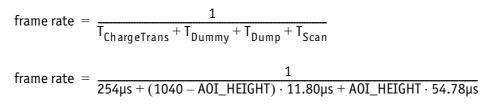
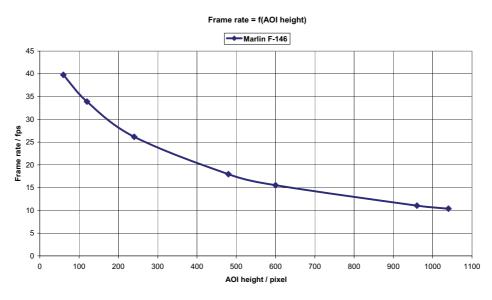

AOI height	Frame rate / fps	T _{frame} / ms	
1040	10.38	96.39	
960	11.04	90.57	
600	15.53	64.40	
480	17.96	55.67	
240	26.16	38.23	
120	33.90	29.50	
60	39.78	25.14	

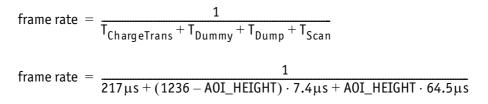
Table 52: Frame rates Marlin F-145 as function of AOI height

Video formats, modes and bandwidth

Marlin F-146: AOI frame rates

Formula 9: Frame rate calculation Marlin F-146 as function of AOI height




Figure 55: Frame rates Marlin F-146 as function of AOI height

AOI height	Frame rate / fps	T _{frame} / ms	
1040	17.47	57.23	
1024	17.69	56.54	
960	18.59	53.79	
768	21.96	45.53	
600	26.10	38.31	
480	30.16	33.16	
240	43.78	22.84	
120	56.55	17.68	
60	66.20	15.10	

Table 53: Frame rates Marlin F-146 as function of AOI height

Marlin F-201: AOI frame rates

Formula 10: Frame rate calculation Marlin F-201 as function of AOI height

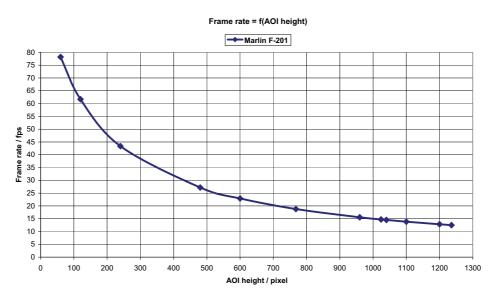
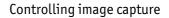



Figure 56: Frame rates Marlin F-201 as function of AOI height

AOI height	Frame rate / fps	T _{frame} / ms	
1236	12.51	79.94	
1200	12.84	77.89	
1100	13.86	72.17	
1040	14.55	68.75	
1024	14.74	67.83	
960	15.58	64.18	
768	18.79	53.22	
600	22.92	43.62	
480	27.20	36.77	
240	43.35	23.07	
120	61.67	16.22	
60	78.19	12.79	

Table 54: Frame rates Marlin F-201 as function of AOI height

Controlling image capture

Shutter modes	The cameras support the SHUTTER_MODES specified in IIDC V1.3. For all models this shutter is a global shutter ; meaning that all pixels are exposed to the light at the same moment and for the same time span.
Continuous mode	In continuous modes the shutter is opened shortly before the vertical reset happens, thus acting in a frame-synchronous way.
External trigger	Combined with an external trigger, it becomes asynchronous in the sense that it occurs whenever the external trigger occurs. Individual images are recorded when an external trigger impulse is present. This ensures that even fast moving objects can be grabbed with no image lag and with minimal image blur.
Camera I/O	The external trigger is fed as a TTL signal through Pin 4 of the camera I/O connector.

Trigger modes

Marlin cameras support IIDC conforming Trigger_Mode_0 and Trigger_Mode_1 and special Trigger_Mode_15 (bulk trigger).

Trigger Mode	also known as	Description
Trigger_Mode_0	Edge mode	Sets the shutter time according to the value set in the shutter (or extended shutter) register
Trigger_Mode_1	Level mode	Sets the shutter time according to the active low time of the pulse applied (or active high time in the case of an inverting input)
Trigger_Mode_15	Programmable mode	Is a bulk trigger , combining one external trigger event with continuous or one-shot or multi-shot internal trigger

Table 55: Trigger modi

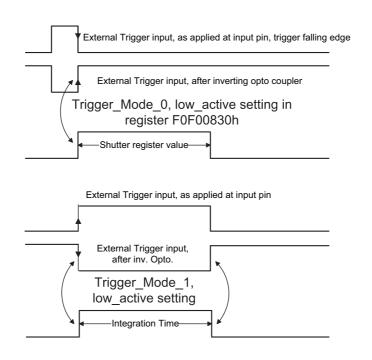


Figure 57: Trigger_mode_0 and 1

Marlin Technical Manual V.2.7.2

Bulk trigger (Trigger_Mode_15)

Trigger_Mode_15 is a bulk trigger, combining one external trigger event with continuous or one-shot or multi-shot internal trigger.

It is an extension to the IIDC trigger modes. One external trigger event can be used to trigger a multitude of internal image intakes.

This is especially useful for:

- Grabbing exactly one image based on the first external trigger.
- Filling the camera's internal image buffer with one external trigger without overriding images.
- Grabbing an unlimited amount of images after one external trigger (surveillance)

The next image details this mode.

External Trigger input, after inverting optocoupler			
Trigger_Mode_15 (Bulk trigger)			
N x image; N: continuous, one shot, multi shot			

Figure 58: Trigger_Mode_15

The functionality is controlled via bit [6] and bitgroup [12-15] of the IIDC register:

Register	Name	Field	Bit	Description
0xF0F00830	0830 TRIGGER_MODE	Presence_Inq	[0]	Presence of this feature: 0: N/A 1: Available
		Abs_Control	[1]	Absolute value control O: Control with value in the Value field 1: Control with value in the Absolute value CSR If this bit = 1 the value in the Value field has to be ignored.
			[25]	Reserved
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status 0: OFF 1: ON If this bit = 0, other fields will be read only.
		Trigger_Polar- ity	[7]	Select trigger polarity (Except for software trigger)
				If Polarity_Inq is 1: Write to change polarity of the trigger input. Read to get polarity of the trigger input.
				If Polarity_Inq is 0: Read only. 0: Low active input 1: High active input
		Trigger_Source	[810]	Select trigger source
				Set trigger source ID from trigger source ID_Inq.
		Trigger_Value	[11]	Trigger input raw signal value read only
				0: Low 1: High
		Trigger_Mode	[1215]	Trigger_Mode
				(Trigger_Mode_015)
			[1619]	Reserved
		Parameter	[2031]	Parameter for trigger function, if required (optional)

Table 56: Trigger_Mode_15 (Bulk trigger)

The screenshots below illustrate the use of Trigger_Mode_15 on a register level:

- Line #1switches continuous mode off, leaving viewer in listen mode.
- Line #2 prepares 830h register for external trigger and Mode_15.

Left = continuous	Middle = one-shot	Right = multi-shot
Line #3 switches camera back to continuous mode. Only one	Line #3 toggles one-shot bit [0] of the one-shot register 61C so	Line #3 toggles multi-shot bit [1] of the one-shot register 61C so
image is grabbed precisely with	that only one image is grabbed,	that Ah images are grabbed,
the first external trigger.	based on the first external trig- ger.	starting with the first external trigger.
To repeat rewrite line three.	To repeat rewrite line three.	To repeat rewrite line three.

Table 57: Description: using Trigger_Mode_15: continuous, one-shot, multi-shot

Direct Ac	cess	2	Direct Ac	cess	2	Direct Ac	cess	×
Address:	F0F00614	<u>R</u> ead	Address:	F0F0061c	<u>R</u> ead	Address:	F0F0061C	<u>R</u> ead
Data:	80000000	Write	Diata:	80000000	Write	Data:	4000000A	Write
1: F0F00614 <- 00000000		00	2: F0F00	614 <- 0000000 830 <- 020F000 61C <- 4000000	0			

Figure 59: Using Trigger_Mode_15: Continuous, one-shot, multi-shot

Note

Shutter for the images is controlled by shutter register.

Trigger delay

As already mentioned earlier, since firmware version 2.03, Marlin cameras feature various ways to delay image capture based on external trigger.

With IIDC V1.31 there is a standard CSR at Register F0F00534/834h to control a delay up to FFFh x timebase value.

The following table explains the inquiry register and the meaning of the various bits.

Register	Name	Field	Bit	Description
0xF0F00534	TRIGGER_DLY_INQUIRY	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Abs_Control_Inq	[1]	Capability of control with absolute value
			[2]	Reserved
		One_Push_Inq	[3]	One Push auto mode (controlled automatically by the camera once)
		ReadOut_Inq	[4]	Capability of reading out the value of this feature
		ON_OFF	[5]	Capability of switching this feature ON and OFF
		Auto_Inq	[6]	Auto Mode (controlled automati- cally by the camera)
		Manual_Inq	[7]	Manual Mode (controlled by user)
		Min_Value	[819]	Minimum value for this feature
		Max_Value	[2031]	Maximum value for this feature

Table 58: Trigger_Delay_Inquiry register

	Name	Field	Bit	Description
0xF0F00834	TRIGGER_DELAY	Presence_Inq	[0]	Presence of this feature: 0:N/A 1:Available
		Abs_Control	[1]	Absolute value control O: Control with value in the Value field 1: Control with value in the Absolute value CSR If this bit = 1, the value in the Value field has to be ignored
			[25]	Reserved
		ON_OFF	[6]	Write: ON or OFF this feature Read: read a status 0: OFF 1: ON If this bit = 0, other fields will be read only.
			[719]	Reserved
		Value	[2031]	Value
				If you write the value in OFF mode, this field will be ignored.
				If ReadOut capability is not available, then the read value will have no meaning.

Table 59: CSR: trigger delay

Trigger delay advanced register

In addition, the cameras have an advanced register which allows to even more precisely delay the image capture after receiving a hardware trigger.

Register	Name	Field	Bit	Description
0xF1000400	TRIGGER_DELAY	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[15]	Reserved
		ON_OFF	[6]	Trigger delay on/off
			[710]	Reserved
		DelayTime	[1131]	Delay time in µs

Table 60: Advanced CSR: trigger delay

The advanced register allows to delay the start of the integration by max. $2^{21} \mu s$, which is max. 2.1 s after a trigger edge was detected.

- Switching trigger delay to ON also switches external Trigger_Mode_0 to ON.
- This feature works with external Trigger_Mode_0 only.

Exposure time (shutter) and offset

• The exposure (shutter) time for continuous mode and Trigger_Mode_0 is based on the following formula:

Shutter register value x timebase + offset

• The exposure (shutter) time for Trigger_Mode_1 is based on the following formula:

Length of active pulse + offset

Note

- Trigger_Mode_1: Do not make the pulse shorter than 20 µs, because this will not shorten the exposure time any further.
- Trigger_Mode_1: If you start exposure while the sensor is being read out, there will be an additional jitter for the exposure time (the jitter values are the same as in Table 66: Jitter at exposure start (no binning, no sub-sampling) on page 136).

The register value is the value set in the corresponding IIDC register (SHUTTER [81Ch]). This number is in the range between 1 and 4095.

The shutter register value is multiplied by the time base register value (see Table 95: Timebase ID on page 184). The default value here is set to 20 μ s.

A camera-specific offset is also added to this value. It is different for the camera models:

Exposure time offset

Camera model	Exposure time offset
Marlin F-033	12 µs
Marlin F-046	12 µs
Marlin F-080	30 µs
Marlin F-080-30fps	17 µs
Marlin F-145	26 µs
Marlin F-146	26 µs
Marlin F-201	39 µs

Table 61: Camera-specific exposure time offset

Minimum exposure time

Camera model	Minimum exposure time	Effective min. exp. time = Min. exp. time + offset
Marlin F-033	20 µs	20 µs + 12 µs = 32 µs
Marlin F-046	20 µs	20 µs + 12 µs = 32 µs
Marlin F-080	20 µs	20 μs + 30 μs = 50 μs
Marlin F-080-30fps	20 µs	20 μs + 17 μs = 37 μs
Marlin F-145	12 µs	12 μs + 26 μs = 38 μs
Marlin F-146	20 µs	20 µs + 26 µs = 46 µs
Marlin F-201	20 µs	20 μs + 39 μs = 59 μs

Table 62: Camera-specific minimum exposure time

Example Marlin F-033

Camera	Register value	Timebase
Marlin F-033	100	20 µs

Table 63: Register value and Timebase for Marlin F-033

register value x time base + offset = exposure time

 $100 \times 20 \mu s + 12 \mu s = 2012 \mu s$ exposure time

The minimum adjustable exposure time set by register is 20 μ s. \rightarrow The real minimum exposure time of a Marlin F-033 is then: 20 μ s + 12 μ s = 32 μ s

Extended shutter

The exposure time for long-term integration of up to 67 seconds can be extended via the advanced register: EXTENDED_SHUTTER

Register	Name	Field	Bit	Description
0xF100020C	EXTD_SHUTTER	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[1 5]	Reserved
		ExpTime	[631]	Exposure time in µs

Table 64: Advanced register: **extended shutter**

The longest exposure time, 3FFFFFh, corresponds to 67.11 sec.

The lowest possible value of **ExpTime** is camera-specific (see Table 62: Camera-specific minimum exposure time on page 129).

Note

- Exposure times entered via the 81Ch register are mirrored in the extended register, but not vice versa.
- Longer integration times not only increase sensitivity, but may also increase some unwanted effects such as noise and pixel-to-pixel non-uniformity. Depending on the application, these effects may limit the longest usable integration time.
- Changes in this register have immediate effect, even when the camera is transmitting.
- Extended shutter becomes inactive after writing to a format/mode/frame rate register.

One-shot

Marlin cameras can record an image by setting the **one-shot bit** in the 61Ch register. This bit is automatically cleared after the image is captured. If the camera is placed in Iso_Enable mode (see Chapter ISO_Enable / Free-Run on page 134), this flag is ignored.

If **one-shot mode** is combined with the external trigger, the **one-shot** command is used to arm it. The following screenshot shows the sequence of commands needed to put the camera into this mode. It enables the camera to grab exactly one image with an external trigger edge.

If there is no trigger impulse after the camera has been armed, **one-shot** can be cancelled by clearing the bit.

Directco	ntrol		×
Address (FFFF):	F0F0061C	Write
Data:		80000000	<u>R</u> ead
History:	R F0F00 W F0F00 R F0F00 W F0F00	0614:00000000 830:82000000 0830:82000000 61C:00000000 061C:80000000 061C:80000000	

Figure 60: One_shot control

One-shot command on the bus to start of exposure

The following sections describe the time response of the camera using a single frame (one-shot) command. As set out in the IIDC specification, this is a software command that causes the camera to record and transmit a single frame.

The following values apply only when the camera is idle and ready for use. Full resolution must also be set.

Feature	Value
One-shot → Microcontroller-Sync	\leq 250 μs (processing time in the microcontroller)
μ C-Sync/ExSync \rightarrow Integration-Start	8 µs

Table 65: Values for one-shot

Microcontroller-Sync is an internal signal. It is generated by the microcontroller to initiate a trigger. This can either be a direct trigger or a release for ExSync if the camera is externally triggered.

End of exposure to first packet on the bus

After the exposure, the CCD sensor is read out; some data is written into the FRAME_BUFFER before being transmitted to the bus.

The time from the end of exposure to the start of transport on the bus is:

 $500~\mu s \pm 62.5~\mu s$

This time 'jitters with the cycle time of the bus (125 μ s).

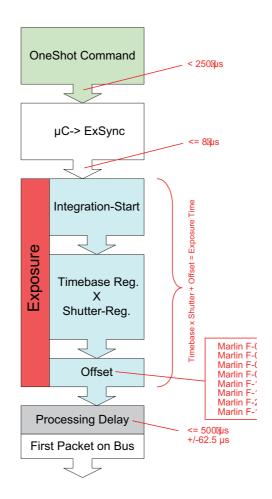


Figure 61: Data flow and timing after end of exposure

Multi-Shot

Setting **multi-shot** and entering a quantity of images in **Count_Number** in the 61Ch register enables the camera to record a specified number of images.

The number is indicated in bits 16 to 31. If the camera is put into **Iso_Enable** mode (see Chapter ISO_Enable / Free-Run on page 134), this flag is ignored and deleted automatically once all the images have been recorded.

If **multi-shot** mode is activated and the images have not yet all been captured, it can be cancelled by resetting the flag. The same result can be achieved by setting the number of images to **0**.

Multi-shot can also be combined with the external trigger in order to grab a certain number of images based on an external trigger. This is especially helpful in combination with the so called **Deferred_Mode** to limit the number of grabbed images to the FIFO size.

ISO_Enable / Free-Run

Setting the MSB (bit 0) in the 614h register (ISO_ENA) puts the camera into ISO_Enable mode or Continuous_Shot (free-run). The camera captures an infinite series of images. This operation can be quit by deleting the **0** bit.

Asynchronous broadcast

The camera accepts asynchronous broadcasts. This involves asynchronous write requests that use node number 63 as the target node with no acknowledge.

This makes it possible for all cameras on a bus to be triggered by software simultaneously - e.g. by broadcasting a **one-shot**. All cameras receive the **one_shot** command in the same IEEE 1394 bus cycle. This creates uncertainty for all cameras in the range of 125 μ s.

Inter-camera latency is described in Chapter Jitter at start of exposure on page 136.

The following screenshot shows an example of broadcast commands sent with the Firedemo example of FirePackage (version 1V51 or newer):

Direct Ac	cess	×
Address:	F0F0061C	<u>R</u> ead
Data:	82000000	Write
	514 <- 0000000 51C <- 8200000	

Figure 62: Broadcast one-shot

- Line 1 shows the broadcast command, which stops all cameras connected to the same IEEE 1394 bus. It is generated by holding the **Shift** key down while clicking on **Write**.
- Line 2 generates a **broadcast one-shot** in the same way, which forces all connected cameras to simultaneously grab one image.

Jitter at start of exposure

The following chapter discusses the latency time which exists for all models when either a hardware or software trigger is generated, until the actual image exposure starts.

Owing to the well-known fact that an **Interline Transfer CCD** sensor has both a light sensitive area and a separate storage area, it is common to interleave image exposure of a new frame and output that of the previous one. It makes continuous image flow possible, even with an external trigger.

The uncertainty time delay before the start of exposure depends on the state of the sensor. A distinction is made as follows:

FVal is active \rightarrow the sensor is reading out, the camera is busy

In this case the camera must not change horizontal timing so that the trigger event is synchronized with the current horizontal clock. This introduces a max. uncertainty which is equivalent to the line time. The line time depends on the sensor used and therefore can vary from model to model.

FVal is inactive \rightarrow the sensor is ready, the camera is idle

In this case the camera can resynchronize the horizontal clock to the new trigger event, leaving only a very short uncertainty time of the master clock period.

Model	Camera idle	Camera busy
Marlin F-033	33.33 ns	27.03 μs
Marlin F-046	33.33 ns	32.17 μs
Marlin F-080	50 ns	63.50 μs
Marlin F-145	50 ns	92.25 μs
Marlin F-146	30 ns	54.78 μs
Marlin F-201	30 ns	64.5 µs

Table 66: Jitter at exposure start (no binning, no sub-sampling)

• Jitter at the beginning of an exposure has no effect on the length of exposure, i.e. it is always constant.

Frame memory and deferred image transport

An image is normally captured and transported in consecutive steps. The image is taken, read out from the sensor, digitized and sent over the 1394 bus.

Deferred image transport

As all Marlin cameras are equipped with built in image memory, this order of events can be paused or delayed by using the **deferred image transport** feature.

Marlin cameras are equipped with 8 MB of RAM. The table below shows how many frames can be stored by each model. The memory operates according to the FIFO (first in, first out) principle. This makes addressing for individual images unnecessary.

Model	Memory Size
Marlin F-033	17 frames
Marlin F-046	13 frames
Marlin F-080	7 frames
Marlin F-145	3 frames
Marlin F-146	3 frames
Marlin F-201	2 frames

Table 67: FIFO memory size

Deferred image transport is especially useful for multi-camera applications:

Assuming several cameras acquire images concurrently. These are stored in the built-in image memory of every camera. Until this memory is full, the limiting factor of available bus bandwidth, DMA- or ISO-channel is overcome.

Note

Configuration

To configure this feature in an advanced register: See Table 101: Advanced register: **Deferred image transport** on page 190.

HoldImg mode

By setting the **HoldImg** flag, transport of the image over the 1394 bus is stopped completely. All captured images are stored in the internal **ImageFiFo**. The camera reports the maximum possible number of images in the **FiFoSize** variable.

- Pay attention to the maximum number of images that can be stored in **FIFO**. If you capture more images than the number in **FIFOSize**, the oldest images are overwritten.
- The extra **SendImage** flag is set to **true** to import the images from the camera. The camera sends the number of images that are entered in the **NumOfImages** parameter.
- If **NumOfImages** is **O** all images stored in FIFO are sent.
- If **NumOfImages** is not **0**, the corresponding number of images is sent.
- If the HoldImg field is set to false, all images in ImageFIFO are deleted. No images are sent.
- The last image in the FIFO will be corrupted, when simultaneously used as input buffer while being read out. Read out one image less than max. buffer size in this case.

The following screenshot displays the sequence of commands needed to work with deferred mode.

Directcor	itrol		×	
Address (F	FFFF):	F1000260	<u>₩</u> rite	
Data:		86000D01	Read	
History:	R F1000; W F1000 W F0F00 W F0F00 R F1000; W F1000 R F1000; W F1000	260:82000D00 61C:82000000 61C:82000000		=

Figure 63: Example: Controlling deferred mode

FastCapture

Note

This mode can be activated only in Format_7.

By setting **FastCapture** to **false**, the maximum frame rate both for image acquisition and read out is associated with the packet size set in the BYTE_PER_PACKET register. The lower this value is, the lower the attainable frame rate is.

By setting **FastCapture** to **true**, all images are recorded at the highest possible frame rate, i.e. the setting above does not affect the frame rate for the image intake but only the read out. This mode is ideal for applications where a burst of images need to be recorded at the highest sensor speed but the output can be at a lower frame frequency to save bandwidth.

Sequence mode

Generally all Marlin cameras enable certain image settings to be modified on the fly, e.g. gain and shutter can be changed by the host computer by writing into the gain and shutter register even while the camera is running. An uncertainty of one or two images remains because normally the host does not know (especially with external trigger) when the next image will arrive.

Sequence mode is a different concept where the camera holds a set of different image parameters for a sequence of images. The parameter set is stored volatile in the camera for each image to be recorded. This sequence of parameter sets is simply called a sequence. The advantage is that the camera can easily synchronize this parameter set with the images so that no uncertainty can occur. All CCD model Marlin cameras support 32 different sequence parameters.

Examples For a sequence of images, each image can be recorded with a different shutter or gain to obtain different brightness effects.

> The image area (AOI) of a sequence of images can automatically be modified, thus creating a panning or sequential split screen effect.

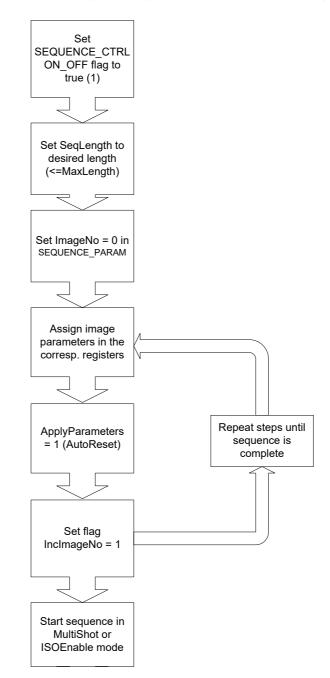
The following registers can be modified to affect the individual steps of the sequence.

Mode	this registers can be modified
All modes	Cur_V_Mode, Cur_V_Format, ISO_Channel, ISO_Speed, Brightness, White_Balance (color cameras only), Shutter, Gain, look-up table, Tes- tImage
Fixed modes only	Cur_V_Frm_Rate
Format_7 only	Image_Position, Image_Size, Color_Coding_ID, Byte_Per_Packet

Table 68: Registers to be modified within a sequence

Note	Sequence mode requires not only FW 3.03 but also special care
Û	if changing image size, Color_Coding_ID and frame rate related parameters. This is because these changes not only affect settings in the camera but also require corresponding settings in the receiving software in the PC.
Caution	Incorrect handling may lead to image corruption or loss of subsequent images .
N	Please ask for detailed support if you want to use this fea- ture.

How is sequence mode implemented?


There is a FIFO (first in first out) memory for each of the IIDC v. 1.3 registers listed above. The depth of each FIFO is fixed to 32(dez) complete sets. Functionality is controlled by the following advanced registers.

Register	Name	Field	Bit	Description
0xF1000220	SEQUENCE_CTRL	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[14]	Reserved
		AutoRewind	[5]	
		ON_OFF	[6]	Enable/disable this feature
			[715]	Reserved
		MaxLength	[1623]	Max possible length of a sequence (read only)
		SeqLength	[2431]	Length of the sequence (32 dez for all CCD models)
0xF1000224	SEQUENCE_PARAM		[04]	Reserved
		ApplyParameters	[5]	Apply settings to selected image of sequence; auto-reset
		IncImageNo	[6]	Increment ImageNo after ApplyParameters has finished
			[723]	Reserved
		ImageNo	[2431]	Number of image within a sequence

Table 69: Advanced register: Sequence mode

Marlin Technical Manual V.2.7.2

The following flow diagram shows how to set up a sequence:

Figure 64: Sequence mode flow diagram

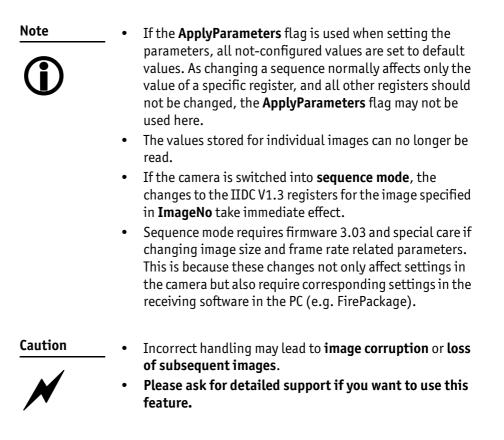
During sequencing, the camera obtains the required parameters, image by image, from the corresponding FIFOs (e.g. information for exposure time).

Points to pay attention to when working with a sequence

- If more images are recorded than defined in **SeqLength**, the settings for the last image remain in effect.
- If **sequence** mode is cancelled, the camera can use the FIFO for other tasks. For this reason, a sequence must be loaded back into the camera after **sequence** mode has been cancelled.
- To repeat the sequence, stop the camera and send the **multi-shot** or **IsoEnable** command again. Each of these two commands resets the sequence.
- Using **single-shot** mode in combination with a sequence does not make sense, because **single-shot** mode restarts the sequence every time.
- The sequence may not be active when setting the AutoRewind flag. For this reason it is important to set the flag before the **multi-shot** or **IsoEnable** commands.
- If the sequence is used with the **deferred transport** feature, the number of images entered in **Seq_Length** may not be exceeded.

The following screenshot shows an example of a sequence for eight different image settings. It uses the **Firetool program** as graphical representation. Please note the changes in the shutter time; that creates descending image brightness, and the change in the image position; which creates a panning effect.

Img.	VFormat	VMode	VFps	ISOChn	IsoSpd	Brightn.	WhiteBalVR	WhiteBalUB	Shutter	Gain	LUT	TestImg	ImgPosL	ImgPosT	ImgSizeW	ImgSizeH	ColorID	BytePacket
1	7	0	2			16	0	0	1000	1	0	0	0	0	640	480	0	200
<u>.</u>	7	0	2			16	0	0	900	1	0	0	100	0	640	480	0	200
0	7	0	2			16	0	0	800	1	0	0	200	0	640	480	0	200
10	7	0	2			16	0	0	700	1	0	0	300	0	640	480	0	200
5	7	0	2			16	0	0	600	1	0	0	300	100	640	480	0	200
S	7	0	2			16	0	0	500	1	0	0	300	200	640	480	0	200
89	7	0	2			16	0	0	400	1	0	0	300	300	640	480	0	200
	7	0	2			16	0	0	300	1	0	0	300	400	640	480	0	200
Lo ady	ad current	paramete	er	Sequence	elength:	8 *]							Auto R	ewind	Sequence	On	Upload


Figure 65: Example of sequence mode settings with Firetool

Changing the parameters within a sequence

To change the parameter set for one image, it is not necessary to modify the settings for the entire sequence. The image can simply be selected via the **ImageNo** field and it is then possible to change the corresponding IIDC V1.3 registers.

Points to pay attention to when changing the parameters

Secure image signature (SIS)

SIS: Definition

Secure image signature (SIS) is the synonym for data, which is inserted into an image to improve or check image integrity.

With the new firmware V3.03, all CCD Marlin models can insert

- Time stamp (1394 bus cycle time at the beginning of integration)
- Trigger counter (external trigger seen only)
- Frame counter (frames read out of the sensor)

into a selectable line position within the image. Furthermore the trigger counter and the frame counter are available as advanced registers to be read out directly.

SIS: Scenarios

The following scenarios benefit from this feature:

- Assuming camera runs in **continuous mode**, the check of monotonically changing bus cycle time is a simple test that no image was skipped or lost in the camera or subsequently in the image processing chain.
- In (synchronized) **multi-camera applications**, the time stamp can be used to identify those images, shot at the same moment in time.
- The cross-check of the frame counter of the camera against the frame counter of the host system also identifies any **skipped or lost images** during transmission.
- The cross-check of the trigger counter against the frame counter in the camera can identify a **trigger overrun** in the camera.

Note

• **FirePackage** offers additional and independent checks to be performed for the purpose of image integrity. Details can be found in the respective documentation.

The handling of the SIS feature is fully described in the Chapter Secure image signature (SIS) on page 197.

How does bandwidth affect the frame rate?

In some modes the IEEE 1394a bus limits the attainable frame rate. According to the 1394a specification on isochronous transfer, the largest data payload size of 4096 bytes per 125 μ s cycle is possible with bandwidth of 400 Mbit/s. In addition, because of a limitation in an IEEE 1394 module (GP2Lynx), only a maximum number of 4095 packets per frame are allowed.

The following formula establishes the relationship between the required Byte_Per_Packet size and certain variables for the image. It is valid only for Format_7.

BYTE_PER_PACKET = frame rate \times AOIWidth \times AOIHeight \times ByteDepth \times 125µs

Formula 11: Byte_per_Packet calculation (only Format_7)

If the value for **BYTE_PER_PACKET** is greater than 4096 (the maximum data payload), the sought-after frame rate cannot be attained. The attainable frame rate can be calculated using this formula:

(Provision: BYTE_PER_PACKET is divisible by 4):

BYTE_PER_PACKET

AOI_WIDTH × AOI_HEIGHT × ByteDepth × 125µs

Formula 12: Maximum frame rate calculation

ByteDepth based on the following values:

framerate ≈ ----

Mode	bits/pixel	byte per pixel
Mono8	8	1
Mono16	16	2
YUV422	16	2
YUV411	12	1.5

Table 70: ByteDepth

Example formula for the b/w camera

Mono16, 1392 x 1040, 15 fps desired

 $BYTE_PER_PACKET ~=~ 15 \times 1392 \times 1040 \times 2 \times 125 \mu s ~=~ 5428 > 4096$

 \Rightarrow frame rate_{reachable} $\approx \frac{4096}{1392 \times 1040 \times 2 \times 125 \mu s} = 11.32$

Formula 13: Example max. frame rate calculation

Test images

Loading test images

FirePackage	Fire4Linux
1. Start SmartView.	1. Start cc1394 viewer.
2. Click the Edit settings button.	 In Adjustments menu click on Picture Control.
3. Click Adv1 tab.	3. Click Main tab.
4. In combo box Test images choose	4. Activate Test image check box on .
Image 1 or another test image.	5. In combo box Test images choose Image 1 or another test image.

Table 71: Loading test images in different viewers

Test images b/w cameras

Marlin b/w cameras have two test images that look the same. Both images show a gray bar running diagonally (mirrored at the middle axis).

- Image 1 is static.
- Image 2 moves upwards by 1 pixel/frame.

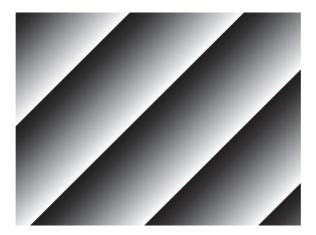
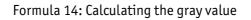



Figure 66: Gray bar test image

Gray value = (x + y)MOD256

(8-bit mode)

Marlin Technical Manual V.2.7.2

Test images for color cameras

The color cameras have the following test images:

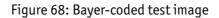

YUV422 mode

Figure 67: Color test image

Mono8 (raw data)

The color camera outputs Bayer-coded raw data in Mono8 instead of (as described in IIDC V1.3) a real Y signal.

Note

()

The first pixel of the image is always the red pixel from the sensor. (Mirror must be switched off.)

Configuration of the camera

All camera settings are made by writing specific values into the corresponding registers.

This applies to:

- values for general operating states such as video formats and modes, exposure times, etc.
- extended features of the camera that are turned on and off and controlled via corresponding registers (so-called advanced registers).

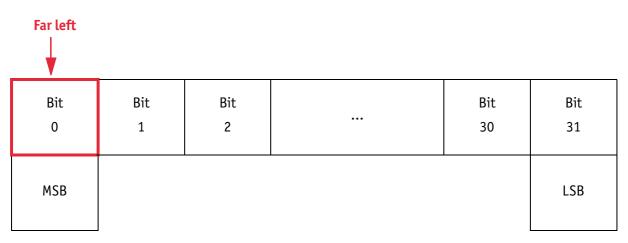
Camera_Status_Register

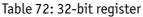
The interoperability of cameras from different manufacturers is ensured by IIDC, formerly DCAM (Digital Camera Specification), published by the IEEE 1394 Trade Association.

IIDC is primarily concerned with setting memory addresses (e.g. CSR: Camera_Status_Register) and their meaning.

In principle all addresses in IEEE 1394 networks are 64 bits long.

The first 10 bits describe the Bus_Id, the next 6 bits the Node_Id.


Of the subsequent 48 bits, the first 16 are is always FFFFh, leaving the description for the Camera_Status_Register in the last 32 bits.


If a CSR F0F00600h is mentioned below this means in full:

Bus_Id, Node_Id, FFFF F0F00600h

Writing and reading to and from the register can be done with programs such as **FireView** or by other programs developed using an API library (e.g. **FirePackage**).

Every register is 32 bit (big endian) and implemented as follows (MSB = Most Significant Bit; LSB = Least Significant Bit):

Example

This requires, for example, that to enable **ISO_Enabled mode** (see Chapter ISO_Enable / Free-Run on page 134), (bit 0 in register 614h), the value 80000000 h must be written in the corresponding register.

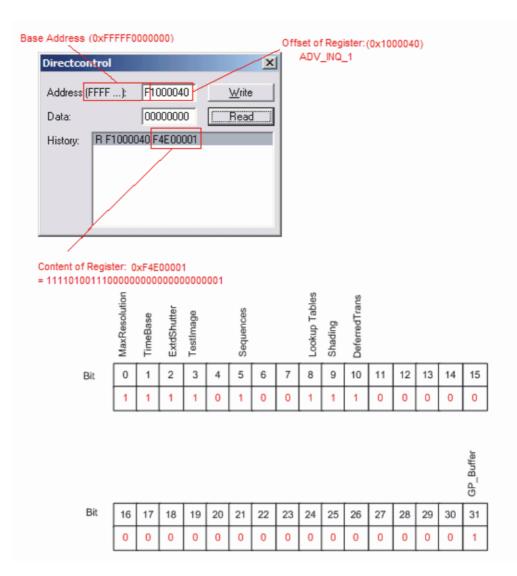


Figure 69: Configuration of the camera

Configuration of the camera

Sample program

The following sample code in C shows how the register is set for frame rate, video mode/format and trigger mode using the **FireCtrl DLL** from the **FirePackage API**. Also shown is how the camera is switched into ISO_Enabled mode:

```
WriteQuad(m_cmdRegBase + CCR_FRAME-RATE, Frame-Rate << 29);
WriteQuad(m_cmdRegBase + CCR_VMODE, mode << 29);
WriteQuad(m_cmdRegBase + CCR_VFORMAT, format << 29);
WriteQuad(m_cmdRegBase + CCR_TRGMODE, extTrigger ? 0x82000000 : 0);
Sleep(100);
WriteQuad(m_cmdRegBase + CCR_ISOENABLE, 0x80000000);
...
```

Configuration ROM

The information in the Configuration ROM is needed to identify the node, its capabilities and which drivers are required.

The base address for the **configuration ROM** for all registers is FFFF F0000000h.

If you want to use the **DirectControl** program to read or write to a register, enter the following value in the Address field:

F0F00000h + Offset

The ConfigRom is divided into

- Bus info block: providing critical information about the bus-related capabilities
- Root directory: specifying the rest of the content and organization, such as:
 - Node unique ID leaf
 - Unit directory and
 - Unit dependant info

The base address of the camera control register is calculated as follows based on the camera-specific base address:

	Offset	0-7	8-15	16-23	24-31	
	400h	04	24	45	EE	
Bus info block	404h	31	33	39	34	ASCII for 1394
Bus mo block	408h	20	00	A0	00	Bus capabilities
	40Ch	00	0A	47	01	Node_Vendor_Id, Chip_id_hi
	410h	00	00	Serial	number	Chip_id_lo

Table 73: Configuration ROM

Root directory	414h	00	04	B7	85	Acc
	418h	03	00	0A	47	may 8D)
	41Ch	0C	00	83	CO	the
	420h	8D	00	00	02	Ì
	424h	D1	00	00	04	1

ccording to IEEE1212, the root directory ay have another length. The keys (e.g. D) point to the offset factors rather than ne offset (e.g.420h) itself.

Table 73: Configuration ROM

The entry with key 8D in the root directory (420h in this case) provides the offset for the Node unique ID leaf.

To compute the effective start address of the node unique ID leaf:

To compute the effective start address of the node unique ID leaf				
currAddr	= node unique ID leaf address			
destAddr	= address of directory entry			
addr0ffset	= value of directory entry			
destAddr	= currAddr + (4 x addrOffset)			
	= 420h + (4 x 000002h)			
	= 428h			

Table 74: Computing effective start address

420h + 000002 x 4 = 428h

	Offset	0-7	8-15	16-23	24-31	
	428h	00	02	CA	71	CRC
Node unique ID leaf	42Ch	00	0A	47	01	Node_Vendor_Id,Chip_id_hi
	430h	00	00	Serial nu	ımber	

Table 75: Config ROM

The entry with key D1 in the root directory (424h in this case) provides the offset for the unit directory as follows:

424h + 000004 x 4 = 434h

	Offset	0-7	8-15	16-23	24-31
>	434h	00	03	93	7D
Unit directory	438h	12	00	A0	2D
	43Ch	13	00	01	02
	440h	D4	00	00	01

Table 76: Config ROM

The entry with key D4 in the unit directory (440h in this case) provides the offset for unit dependent info:

440h + 000001 * 4 = 444h

	Offset	0-7	8-15	16-23	24-31
	444h	00	03	7F	89
Unit dependent info	448h	40	3C	00	00
	44Ch	81	00	00	02
	450h	82	00	00	06

Table 77: Config ROM

And finally, the entry with key 40 (448h in this case) provides the offset for the camera control register:

FFFF F0000000h + 3C0000h x 4 = FFFF F0F00000h

The base address of the camera control register is thus:

FFFF F0F00000h

The offset entered in the table always refers to the base address of FOF00000h.

If you want to use the **DirectControl** program to read or write to a register, enter the following value in the Address field:

FOF00000h + Offset

Implemented registers (IIDC V1.3)

The following tables show how standard registers from IIDC V1.3 are implemented in the camera:

- Base address is F0F00000h
- Differences and explanations can be found in the **Description** column.

Camera initialize register

Offs	set	Name	Description
000	h	INITIALIZE	Assert MSB = 1 for Init.

Table 78: Camera initialize register

Inquiry register for video format

Offset	Name	Field	Bit	Description
100h	V_FORMAT_INQ	Format_0	[0]	Up to VGA (non compressed)
		Format_1	[1]	SVGA to XGA
		Format_2	[2]	SXGA to UXGA
		Format_3	[35]	Reserved
		Format_6	[6]	Still Image Format
		Format_7	[7]	Partial Image Format
			[831]	Reserved

Table 79: Format inquiry register

Inquiry register for video mode

Offset	Name	Field	Bit	Description
180h	V_MODE_INQ	Mode_0	[0]	160 x 120 YUV444
	(Format_0)	Mode_1	[1]	320 x 240 YUV422
		Mode _2	[2]	640 x 480 YUV411
		Mode _3	[3]	640 x 480 YUV422
		Mode _4	[4]	640 x 480 RGB
		Mode _5	[5]	640 x 480 Mono8
		Mode_6	[6]	640 x 480 Mono16
		Mode _X	[7]	Reserved
			[831]	Reserved (zero)
184h	V_MODE_INQ	Mode_0	[0]	800 x 600 YUV422
	(Format_1)	Mode_1	[1]	800 x 600 RGB
		Mode _2	[2]	800 x 600 Mono8
		Mode _3	[3]	1024 x 768 YUV422
		Mode _4	[4]	1024 x 768 RGB
		Mode _5	[5]	1024 x 768 Mono8
		Mode_6	[6]	800 x 600 Mono16
		Mode _7	[7]	1024 x 768 Mono16
			[831]	Reserved (zero)
188h	V_MODE_INQ	Mode_0	[0]	1280 x 960 YUV422
	(Format_2)	Mode _1	[1]	1280 x 960 RGB
		Mode _2	[2]	1280 x 960 Mono8
		Mode _3	[3]	1600 x 1200 YUV422
		Mode _4	[4]	1600 x 1200 RGB
		Mode _5	[5]	1600 x 1200 Mono8
		Mode _6	[6]	1280 x 960 Mono16
		Mode _7	[7]	1600 x 1200 Mono16
			[831]	Reserved (zero)
18Ch			•	
	Reserved for other	V_MODE_INQ_x for F	ormat_x.	Always 0
197h				
198h	V_MODE_INQ_6 (Forma	t_6)		Always 0

Table 80: Video mode inquiry register

Offset	Name	Field	Bit	Description
19Ch	V_MODE_INQ	Mode_0	[0]	Format_7 Mode_0
	(Format_7)	Mode _1	[1]	Format_7 Mode_1
		Mode _2	[2]	Format_7 Mode_2
		Mode _3	[3]	Format_7 Mode_3
		Mode _4	[4]	Format_7 Mode_4
		Mode _5	[5]	Format_7 Mode_5
		Mode _6	[6]	Format_7 Mode_6
		Mode _7	[7]	Format_7 Mode_7
			[831]	Reserved (zero)

Table 80: Video mode inquiry register

Inquiry register for video frame rate and base address

Offset	Name	Field	Bit	Description
200h	V_RATE_INQ	FrameRate_0	[0]	Reserved
	(Format_0, Mode_0)	FrameRate _1	[1]	Reserved
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	240 fps (IIDC V1.31)
			[831]	Reserved (zero)
204h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_0, Mode_1)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	240 fps (IIDC V1.31)
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
208h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_0, Mode_2)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	240 fps (IIDC V1.31)
			[831]	Reserved (zero)
20Ch	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_0, Mode_3)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	240 fps (IIDC V1.31)
			[831]	Reserved (zero)
210h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_0, Mode_4)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	240 fps (IIDC V1.31)
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
214h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_0, Mode_5)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	240 fps (IIDC V1.31)
			[831]	Reserved (zero)
218h	V_RATE_INQ	(Format_0, Mode_6)	[0]	1.875 fps
		FrameRate_0		
		FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	240 fps (IIDC V1.31)
			[831]	Reserved (zero)
21Ch				
•••	Reserved V_RATE_INQ_)_x (for other Mode_x	of Format_0)	Always 0
21Fh				
220h	V_RATE_INQ	FrameRate_0	[0]	Reserved
	(Format_1, Mode_0)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	240 fps (IIDC V1.31)
			[831]	Reserved (zero)
			1	1

Offset	Name	Field	Bit	Description
224h	V_RATE_INQ	FrameRate_0	[0]	Reserved
	(Format_1, Mode_1)	FrameRate _1	[1]	Reserved
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	240 fps (IIDC V1.31)
			[831]	Reserved (zero)
228h	V_RATE_INQ	FrameRate_0	[0]	Reserved
	(Format_1, Mode_2)	FrameRate _1	[1]	Reserved
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	240 fps (IIDC V1.31)
			[831]	Reserved (zero)
22Ch	V_RATE_INQ (Format_1,	FrameRate_0	[0]	1.875 fps
	Mode_3)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	240 fps (IIDC V1.31)
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
230h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_1, Mode_4)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	240 fps (IIDC V1.31)
			[831]	Reserved (zero)
234h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_1, Mode_5)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	240 fps (IIDC V1.31)
			[831]	Reserved (zero)
238h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_1, Mode_6)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	240 fps (IIDC V1.31)
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
23Ch	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_1, Mode_7)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	Reserved
			[831]	Reserved (zero)
240h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_0)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	Reserved
		FrameRate _7	[7]	Reserved
			[831]	Reserved (zero)
244h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_1)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	Reserved
		FrameRate _7	[7]	Reserved
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
248h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_2)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	120 fps (IIDC V1.31)
		FrameRate _7	[7]	Reserved
			[831]	Reserved (zero)
24Ch	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_3)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	Reserved
		FrameRate _7	[7]	Reserved
			[831]	Reserved (zero)
250h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_4)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	Reserved
		FrameRate _6	[6]	Reserved
		FrameRate _7	[7]	Reserved
			[831]	Reserved (zero)

Offset	Name	Field	Bit	Description
254h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_5)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	Reserved
		FrameRate _7	[7]	Reserved
			[831]	Reserved (zero)
258h	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_6)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	Reserved
		FrameRate _7	[7]	Reserved
			[831]	Reserved (zero)
25Ch	V_RATE_INQ	FrameRate_0	[0]	1.875 fps
	(Format_2, Mode_7)	FrameRate _1	[1]	3.75 fps
		FrameRate _2	[2]	7.5 fps
		FrameRate _3	[3]	15 fps
		FrameRate _4	[4]	30 fps
		FrameRate _5	[5]	60 fps
		FrameRate _6	[6]	Reserved
		FrameRate _7	[7]	Reserved
			[831]	Reserved
260h				
	Reserved V_RATE_INQ_	y_x (for other Format	_y, Mode_x)	
2BFh				
2C0h	V_REV_INQ_6_0 (Format_6, Mode0)		Always 0	
2C4h				
••	Reserved V_REV_INQ_6_	_x (for other Mode_x	of Format_6)	Always 0
2DFh				

Offset	Name Field	Bit	Description
2E0h	V-CSR_INQ_7_0	[031]	CSR_quadlet offset for Format_7 Mode_0
2E4h	V-CSR_INQ_7_1	[031]	CSR_quadlet offset for Format_7 Mode_1
2E8h	V-CSR_INQ_7_2	[031]	CSR_quadlet offset for Format_7 Mode_2
2ECh	V-CSR_INQ_7_3	[031]	CSR_quadlet offset for Format_7 Mode_3
2F0h	V-CSR_INQ_7_4	[031]	CSR_quadlet offset for Format_7 Mode_4
2F4h	V-CSR_INQ_7_5	[031]	CSR_quadlet offset for Format_7 Mode_5
2F8h	V-CSR_INQ_7_6	[031]	CSR_quadlet offset for Format_7 Mode_6
2FCh	V-CSR_INQ_7_7	[031]	CSR_quadlet offset for Format_7 Mode_7

Inquiry register for basic function

Offset	Name	Field	Bit	Description						
400h	BASIC_FUNC_INQ	Advanced_Feature_Inq	[0]	Inquiry for advanced fea- tures (Vendor unique Fea- tures)						
		Vmode_Error_Status_Inq	[1]	Inquiry for existence of Vmode_Error_Status regis- ter						
		Feature_Control_Error_Status_Inq	[2]	Inquiry for existence of Fea- ture_Control_Error_Status						
		Opt_Func_CSR_Inq	[3]	Inquiry for Opt_Func_CSR						
			[47]	Reserved						
		1394b_mode_Capability	[8]	Inquiry for 1394b_mode Capability						
			[915]	Reserved						
		Cam_Power_Cntl	[16]	Camera process power ON/ OFF capability						
						[1718]	Reserved			
		Multi_Shot_Inq	[20]	Multi-shot transmission capability						
			[2127]	Reserved						
		Memory_Channel	[2831]	Maximum memory channel number (N) If 0000, no user memory available						

Table 82: Basic function inquiry register

Inquiry register for feature presence

Offset	Name	Field	Bit	Description
404h	FEATURE_HI_INQ	Brightness	[0]	Brightness control
		Auto_Exposure	[1]	Auto_Exposure control
		Sharpness	[2]	Sharpness control
		White_Balance	[3]	White balance control
		Hue	[4]	Hue control
		Saturation	[5]	Saturation control
		Gamma	[6]	Gamma control
		Shutter	[7]	Shutter control
		Gain	[8]	Gain control
		Iris	[9]	Iris control
		Focus	[10]	Focus control
		Temperature	[11]	Temperature control
		Trigger	[12]	Trigger control
		Trigger_Delay	[13]	Trigger delay control
		White_Shading	[14]	White shading control
		Frame_Rate	[15]	Frame rate control
			[1631]	Reserved
408h	FEATURE_LO_INQ	Zoom	[0]	Zoom control
		Pan	[1]	Pan control
		Tilt	[2]	Tilt control
		Optical_Filter	[3]	Optical filter control
			[415]	Reserved
		Capture_Size	[16]	Capture_Size for Format_6
		Capture_Quality	[17]	Capture_Quality for Format_6
			[1631]	Reserved
40Ch	OPT_FUNCTION_INQ		[0]	Reserved
		PIO	[1]	Parallel Input/Output control
		SIO	[2]	Serial Input/Output control
		Strobe_out	[431]	Strobe signal output
410h				
	Re	eserved		Address error on access
47Fh				

Offset	Name	Field	Bit	Description
480h	Advanced_Feature_Inq	Advanced_Feature_Quadlet_Offset	[031]	Quadlet offset of the advanced feature CSR's from the base address of initial reg- ister space (Vendor unique)
				This register is the offset for the Access_Control_Register and thus the base address for Advanced Features.
				Access_Control_Register does not prevent access to advanced features. In some programs it should still always be activated first. Advanced Feature Set Unique Value is 7ACh and CompanyID is A47h.
484h	PIO_Control_CSR_Inq	PIO_Control_Quadlet_Offset	[031]	Quadlet offset of the PIO_Con- trol CSR's from the base address of initial register space (Vendor unique)
488h	SIO_Control_CSR_Inq	SIO_Control_Quadlet_Offset	[031]	Quadlet offset of the SIO_Con- trol CSR's from the base address of initial register space (Vendor unique)
48Ch	Strobe_Output_CSR_Inq	Strobe_Output_Quadlet_Offset	[031]	Quadlet offset of the Strobe_Output signal CSR's from the base address of ini- tial register space (Vendor unique)

Table 83: Feature presence inquiry register

Inquiry register for feature elements

Register	Name	Field	Bit	Description
0xF0F00500	BRIGHTNESS_INQUIRY	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Abs_Control_Inq	[1]	Capability of control with absolute value
			[2]	Reserved
		One_Push_Inq	[3]	One Push auto mode (con- trolled automatically by the camera once)
		Readout_Inq	[4]	Capability of reading out the value of this feature
		ON_OFF	[5]	Capability of switching this feature ON and OFF
		Auto_Inq	[6]	Auto Mode (controlled auto- matically by the camera)
		Manual_Inq	[7]	Manual Mode (controlled by user)
		Min_Value	[819]	Min. value for this feature
		Max_Value	[2031]	Max. value for this feature
504h	AUTO_EXPOSURE_INQ	Same	definition as	Brightness_inq.
508h	SHARPNESS_INQ	Same	definition as	Brightness_inq.
50Ch	WHITE_BAL_INQ			Brightness_inq.
510h	HUE_INQ	Same	definition as	Brightness_inq.
514h	SATURATION_INQ	Same	definition as	Brightness_inq.
518h	GAMMA_INQ	Same	definition as	Brightness_inq.
51Ch	SHUTTER_INQ	Same definition as Brightness_inq.		
520h	GAIN_INQ	Same	definition as	Brightness_inq.
524h	IRIS_INQ		alway	/s 0
528h	FOCUS_INQ	always 0		
52Ch	TEMPERATURE_INQ	Same	definition as	Brightness_inq.

Table 84: Feature elements inquiry register

Register	Name	Field	Bit	Description
530h	TRIGGER_INQ	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Abs_Control_Inq	[1]	Capability of control with absolute value
		-	[23	Reserved
		Readout_Inq	[4]	Capability of reading out the value of this feature
		ON_OFF	[5]	Capability of switching this feature ON and OFF
		Polarity_Inq	[6]	Capability of changing the polarity of the rigger input
			[715]	Reserved
		Trigger_Mode0_Inq	[16]	Presence of Trigger_Mode 0
		Trigger_Mode1_Inq	[17]	Presence of Trigger_Mode 1
		Trigger_Mode2_Inq	[18]	Presence of Trigger_Mode 2
		Trigger_Mode3_Inq	[19]	Presence of Trigger_Mode 3
			[2031	Reserved
534h	TRIGGER_DELAY_INQUIRY	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Abs_Control_Inq	[1]	Capability of control with absolute value
			[2]	Reserved
		One_Push_Inq	[3]	One Push auto mode con- trolled automatically by the camera once)
		Readout_Inq	[4]	Capability of reading out the value of this feature
		ON_OFF	[5]	Capability of switching this feature ON and OFF
		Auto_Inq	[6]	Auto Mode (controlled auto- matically by the camera)
		Manual_Inq	[7]	Manual Mode (controlled by user)
		Min_Value	[819]	Minimum value for this fea- ture
		Max_Value	[2031]	Maximum value for this fea- ture
53857Ch		Reserved for other F	EATURE_HI_	INQ

Table 84: Feature elements inquiry register

Marlin Technical Manual V.2.7.2

Register	Name	Field Bit Description
580h	ZOOM_INQ	Always 0
584h	PAN_INQ	Always 0
588h	TILT_INQ	Always 0
58Ch	OPTICAL_FILTER_INQ	Always 0
590 5BCh	Reserved for other FEA- TURE_LO_INQ	Always 0
5C0h	CAPTURE_SIZE_INQ	Always 0
5C4h	CAPTURE_QUALITY_INQ	Always 0
5C8h 5FCh	Reserved for other FEA- TURE_LO_INQ	Always 0
600h	CUR-V-Frm_RATE/Revision	Bits [02] for the frame rate
604h	CUR-V-MODE	Bits [02] for the current video mode
608h	CUR-V-FORMAT	Bits [02] for the current video format
60Ch	ISO-Channel	Bits [03] for channel, [67] for ISO-speed
610h	Camera_Power	Always 0
614h	ISO_EN/Continuous_Shot	Bit 0: 1 for continuous shot; 0 for stop
618h	Memory_Save	Always 0
61Ch	One_Shot, Multi_Shot,	See Chapter One-shot on page 131
	Count Number	See Chapter Multi-Shot on page 134
620h	Mem_Save_Ch	Always 0
624	Cur_Mem_Ch	Always 0
628h	Vmode_Error_Status	Error in combination of Format/Mode/ISO Speed: Bit(0): No error; Bit(0)=1: error

Table 84: Feature elements inquiry register

Inquiry register for absolute value CSR offset address

Offset	Name	Notes
700h	ABS_CSR_HI_INQ_0	Always 0
704h	ABS_CSR_HI_INQ_1	Always 0
708h	ABS_CSR_HI_INQ_2	Always 0
70Ch	ABS_CSR_HI_INQ_3	Always 0

Table 85: Absolute value inquiry register

Offset	Name	Notes
710h	ABS_CSR_HI_INQ_4	Always 0
714h	ABS_CSR_HI_INQ_5	Always 0
718h	ABS_CSR_HI_INQ_6	Always 0
71Ch	ABS_CSR_HI_INQ_7	Always 0
720h	ABS_CSR_HI_INQ_8	Always 0
724h	ABS_CSR_HI_INQ_9	Always 0
728h	ABS_CSR_HI_INQ_10	Always 0
72Ch	ABS_CSR_HI_INQ_11	Always 0
730h	ABS_CSR_HI_INQ_12	Always 0
734		
	Reserved	Always 0
77Fh		
780h	ABS_CSR_LO_INQ_0	Always 0
784h	ABS_CSR_LO_INQ_1	Always 0
788h	ABS_CSR_LO_INQ_2	Always 0
78Ch	ABS_CSR_LO_INQ_3	Always 0
790h		
	Reserved	Always 0
7BFh		
7C0h	ABS_CSR_L0_INQ_16	Always 0
7C4h	ABS_CSR_L0_INQ_17	Always 0
7C8h		
	Reserved	Always 0
7FFh		

Table 85: Absolute value inquiry register

Status and control register for feature

The **OnePush** feature, WHITE_BALANCE, is currently implemented. If this flag is set, the feature becomes immediately active, even if no images are being input (see Chapter One-push white balance on page 61).

Offset	Name	Field	Bit	Description
800h	BRIGHTNESS	Presence_Inq	[0]	Presence of this feature
				0: N/A
				1: Available
		Abs_Control	[1]	Absolute value control
				0: Control with value in the Value field
				1: Control with value in the Absolute value CSR
				If this bit = 1, value in the Value field is ignored.
			[2-4]	Reserved
		One_Push	[5]	Write 1: begin to work (Self cleared after operation)
				Read: Value=1 in operation
				Value=0 not in operation
				If A_M_Mode =1, this bit is ignored.
		ON_OFF	[6]	Write: ON or OFF this feature
				Read: read a status
				0: OFF, 1: ON
				If this bit =0, other fields will be read only.
		A_M_Mode	[7]	Write: set the mode
				Read: read a current mode
				0: Manual
				1: Auto
			[8-19]	Reserved
		Value	[20-31]	Value.
				Write the value in Auto mode, this field is ignored.
				If ReadOut capability is not available, read value has no meaning.

Table 86: Feature control register

Offset	Name	Field	Bit	Description
804h	AUTO-EXPOSURE			See above
				Note: Target grey level parameter in SmartView corresponds to Auto_ex- posure register 0xF0F00804 (IIDC).
808h	SHARPNESS			See above

Table 86: Feature control register

Marlin Technical Manual V.2.7.2

Offset	Name	Field	Bit	Description
80Ch	WHITE-BALANCE	Presence_Inq	[0]	Presence of this feature
				0: N/A
				1: Available
				Always 0 for Mono
		Abs_Control	[1]	Absolute value control
				0: Control with value in the Value field 1: Control with value in the Absolute value CSR
				If this bit = 1, value in the Value field is ignored.
			[2-4]	Reserved
		One_Push	[5]	Write '1': begin to work (Self cleared after operation)
				Read: Value='1' in operation
				Value='0' not in operation
				If A_M_Mode =1, this bit is ignored.
		ON_OFF	[6]	Write: ON or OFF this feature,
				Read: read a status
				0: OFF 1: ON
				If this bit =0, other fields will be read only.
		A_M_Mode	[7]	Write: set the mode
				Read: read a current mode
				0: Manual 1: Auto
		U_Value /	[8-19]	U Value / B_Value
		B_Value		Write the value in AUTO mode, this field is ignored.
				If ReadOut capability is not available, read value has no meaning.
		V_Value /	[20-31]	V value / R value
		R_Value		Write the value in AUTO mode, this field is ignored.
				If ReadOut capability is not available, read value has no meaning.

Table 86: Feature control register

Offset	Name	Field	Bit	Description
810h	HUE			See above
				Always 0 for Mono
814h	SATURATION			See above
				Always 0 for Mono
818h	GAMMA			See above
81Ch	SHUTTER			see Advanced Feature Timebase
820h	GAIN			See above
824h	IRIS			Always 0
828h	FOCUS			Always 0
82Ch	TEMPERATURE			Always 0
830h	TRIGGER-MODE			Can be effected via Advanced Feature IO_INP_CTRLx.
834h 87C	Reserved for other FEATURE_HI			Always 0
880h	Zoom			Always 0
884h	PAN			Always 0
888h	TILT			Always 0
88Ch	OPTICAL_FILTER			Always 0
890				
	Reserved for other FEATURE_LO			Always 0
8BCh	FEATORE_LU			
8C0h	CAPTURE-SIZE			Always 0
8C4h	CAPTURE-QUALITY			Always 0
8C8h 8FCh	Reserved for other FEATURE_LO			Always 0

Table 86: Feature control register

Feature control error status register

Offset	Name	Notes
640h	Feature_Control_Error_Status_HI	always 0
644h	Feature_Control_Error_Status_L0	always 0

Table 87: Feature control error register

Video mode control and status registers for Format_7

Quadlet offset Format_7 Mode_0

The quadlet offset to the base address for **Format_7 Mode_0**, which can be read out at F0F002E0h (according to Table 81: **Frame rate inquiry register** on page 156) gives 003C2000h.

4 x 3C2000h = F08000h so that the base address for the latter (Table 88: Format_7 control and status register on page 176) equals to F0000000h + F08000h = F0F08000h.

Quadlet offset Format_7 Mode_1

The quadlet offset to the base address for **Format_7 Mode_1**, which can be read out at F0F002E4h (according to Table 81: **Frame rate inquiry register** on page 156) gives 003C2400h.

4 x 003C2400h = F09000h so that the base address for the latter (Table 88: Format_7 control and status register on page 176) equals to F0000000h + F09000h = F0F09000h.

Format_7 control and status register (CSR)

Offset	Name	Notes
000h	MAX_IMAGE_SIZE_INQ	According to IIDC V1.3
004h	UNIT_SIZE_INQ	According to IIDC V1.3
008h	IMAGE_POSITION	According to IIDC V1.3
00Ch	IMAGE_SIZE	According to IIDC V1.3
010h	COLOR_CODING_ID	See note
014h	COLOR_CODING_INQ	According to IIDC V1.3
034h	PIXEL_NUMER_INQ	According to IIDC V1.3
038h	TOTAL_BYTES_HI_INQ	According to IIDC V1.3
03Ch	TOTAL_BYTES_LO_INQ	According to IIDC V1.3

Table 88: Format_7 control and status register

Offset	Name	Notes
040h	PACKET_PARA_INQ	See note
044h	BYTE_PER_PACKET	According to IIDC V1.3

Table 88: Format_7 control and status register

Note

- For all modes in Format_7, **ErrorFlag_1** and **ErrorFlag_2** are refreshed on each access to the Format_7 register.
- Contrary to IIDC V1.3, registers relevant to Format_7 are refreshed on each access. The **Setting_1** bit is automatically cleared after each access.
- When **ErrorFlag_1** or **ErrorFlag_2** are set and Format_7 is configured, no image capture is started.
- Contrary to IIDC v.1.3, COLOR_CODING_ID is set to a default value after an INITIALIZE or **reset**.
- Contrary to IIDC V1.3, the **UnitBytePerPacket** field is already filled in with a fixed value in the PACK-ET_PARA_INQ register.

Advanced features (Allied Vision-specific)

The camera has a variety of extended features going beyond the possibilities described in IIDC V1.3. The following chapter summarizes all available advanced features in ascending register order.

Note

This chapter is a **reference guide for advanced registers** and does not explain the advanced features itself. For detailed description of the theoretical background see

- Chapter Description of the data path on page 57
- Links given in the table below

Advanced registers summary

Register	Register name	Description
0xF1000010	VERSION_INFO	Table 90: Advanced register: Version information on page 180
0xF1000040	ADV_INQ_1	See Table 92: Advanced register: Advanced feature
0xF1000044	ADV_INQ_2	inquiry on page 182

The following table gives an overview of **all available advanced registers**:

Table 89: Advanced registers summary

Marlin Technical Manual V.2.7.2

Register	Register name	Description
0xF1000200	MAX_RESOLUTION	See Table 93: Advanced register: Maximum resolu- tion inquiry on page 183
0xF1000208	TIMEBASE	See Table 94: Advanced register: Time base on page 184
0xF100020C	EXTD_SHUTTER	See Table 96: Advanced register: Extended shutter on page 185
0xF1000210	TEST_IMAGE	See Table 97: Advanced register: Test image on page 186
0xF1000220	SEQUENCE_CTRL	
0xF1000224	SEQUENCE_PARAM	See Table 69: Advanced register: Sequence mode on page 141
0xF1000240	LUT_CTRL	See Table 99: Advanced register: LUT on page 188
0xF1000244	LUT_MEM_CTRL	
0xF1000248	LUT_INFO	
0xF1000250	SHDG_CTRL	See Table 100: Advanced register: Shading on page
0xF1000254	SHDG_MEM_CTRL	189
0xF1000258	SHDG_INFO	
0xF1000260	DEFERRED_TRANS	See Table 101: Advanced register: Deferred image transport on page 190
0xF1000270	FRAMEINFO	See Table 102: Frame information register on page 191
0xF1000274	FRAMECOUNTER	See FRMCNT_STAMP
0xF1000300	IO_INP_CTRL1	See Table 15: Advanced register: Input control on
0xF1000304	IO_INP_CTRL2	page 47
0xF1000308	IO_INP_CTRL3	Dolphin series only
0xF1000320	IO_OUTP_CTRL1	See Table 21: Advanced register: Output control on
0xF1000324	IO_OUTP_CTRL2	page 51
0xF1000328	IO_OUTP_CTRL3	Dolphin series only
0xF1000340	IO_INTENA_DELAY	See Table 103: Advanced register: Delayed Integra- tion Enable (IntEna) on page 192
0xF1000360	AUTOSHUTTER_CTRL	Marlin/Oscar series only
0xF1000364	AUTOSHUTTER_LO	See Table 104: Advanced register: Auto shutter
0xF1000368	AUTOSHUTTER_HI	control on page 192
0xF1000370	AUTOGAIN_CTRL	Marlin/Oscar series only
		See Table 105: Advanced register: Auto gain con- trol on page 193

Table 89: Advanced registers summary

Register	Register name	Description
0xF1000390	AUTOFNC_AOI	Marlin/Oscar series only
		See Table 106: Advanced register: Autofunction AOI on page 194
0xF10003A0	COLOR_CORR	Marlin/Oscar CCD type color cameras only
		See Table 108: Advanced register: Color correction on page 195
0xF1000400	TRIGGER_DELAY	See Table 109: Advanced register: Trigger Delay on page 195
0xF1000410	MIRROR_IMAGE	Marlin/Oscar series only
		See Table 110: Advanced register: Mirror on page 196
0xF1000510	SOFT_RESET	See Table 111: Advanced register: Soft reset on page 196
0xF1000550	USER_PROFILE	See Table 117: Advanced register: User profiles on page 201
0xF1000600	TIMESTAMP	aka secure image signature (SIS)
		See Table 112: Advanced register: Time stamp on page 197
0xF1000610	FRMCNT_STAMP	See Table 115: Advanced register: Frame counter on page 199
0xF1000620	TRGCNT_STAMP	See Table 116: Advanced register: Trigger counter on page 200
0xF1000FFC	GPDATA_INFO	See Table 120: Advanced register: GPData buffer
0xF1001000	GPDATA_BUFFER	on page 205

Table 89: Advanced registers summary

Note Advanced features should always be activated before accessing them.

- Note
- Currently all registers can be written without being acti-٠ vated. This makes it easier to operate the camera using Directcontrol.
 - Allied Vision reserves the right to require activation in future versions of the software.

Version information inquiry

The presence of each of the following features can be queried by the **O** bit of the corresponding register.

Register	Name	Field	Bit	Description
F1000010	VERSION_INF01	µC type ID	[015]	Reserved
		µC version	[1631]	Bcd-coded vers.#
F1000014			[031]	Reserved
F1000018	VERSION_INFO3	Camera type ID	[015]	See Table 91: Camera type ID list on page 180
		FPGA version	[1631]	Bcd-coded vers.#
F100001C		·	[031]	Reserved

Table 90: Advanced register: Version information

This register holds information about the node_hw_version, the node_sw_version and the node_spec_ID (camera type). μ C version and FPGA version are bcd-coded, which means that e.g. firmware version 0.85 is read as 0x0085.

The FPGA type ID (= camera type ID) identifies the camera type with the help of the following list:

ID	Camera type
1	F145b
2	F145c
3	F201b
4	F201c
5	F145b-1
6	F145c-1
7	F201b-1
8	F201c-1
9	MF033B
10	MF033C
11	MF046B
12	MF046C
13	MF080B
14	MF080C
15	MF145B2
16	MF145C2

Table 91: Camera type ID list

ID	Camera type			
17	MF131B			
18				
19	MF145B2-15fps			
20	MF145C2-15fps			
21	M2F033B			
22	M2F033C			
23	M2F046B			
24	M2F046C			
25	M2F080B			
26	M2F080C			
27	M2F145B2			
28	M2F145C2			
31	M2F145B2-15fps			
32	M2F145C2-15fps			
38	0F320C			
40	OF510C			
42	OF810C			
43	M2F080B-30fps			
44	M2F080C-30fps			
45	M2F145B2-ASM			
46	MM2F145C2-ASM			
47	M2F201B			
48	M2F201C			
49	M2F146B			
50	M2F146C			

Table 91: Camera type ID list

Note

• Marlins with serial numbers beginning with 6xx identify itself as M2F...

Advanced feature inquiry

This register indicates with a named bit if a feature is present or not. If a feature is marked as not present the associated register space might not be available and read/write errors may occur.

Note

Ignore unnamed bits in the following table: these bits might be set or not.

Register	Name	Field	Bit	Description
0xF1000040	ADV_INQ_1	MaxResolution	[0]	
		TimeBase	[1]	
		ExtdShutter	[2]	
		TestImage	[3]	
		FrameInfo	[4]	
		Sequences	[5]	
		VersionInfo	[6]	
			[7]	Reserved
		Look-up tables	[8]	
		Shading	[9]	
		DeferredTrans	[10]	
			[11]	Reserved
			[12]	Reserved
			[13]	Reserved
		TriggerDelay	[14]	
		Misc. features	[15]	
		Soft Reset	[16]	
			[17]	Reserved
		Color correction	[18]	
		User profiles	[19]	
			[2021]	Reserved
		TimeStamp	[22]	
		FrmCntStamp	[23]	
		TrgCntStamp	[24]	
			[2530]	Reserved
		GP_Buffer	[31]	

Table 92: Advanced register: Advanced feature inquiry

Marlin Technical Manual V.2.7.2

Register	Name	Field	Bit	Description
0xF1000044	ADV_INQ_2	Input_1	[0]	
		Input_2	[1]	
			[2]	Reserved
			[37]	Reserved
		Output_1	[8]	
		Output_2	[9]	
			[10]	Reserved
			[1115]	Reserved
		IntEnaDelay	[16]	
			[17]	Reserved
			[1831]	Reserved
0xF1000048	ADV_INQ_3		[031]	Reserved
0xF100004C	ADV_INQ_4		[031]	Reserved

Table 92: Advanced register: Advanced feature inquiry

Maximum resolution

This register indicates the highest resolution for the sensor and is read-only. This register normally outputs the MAX_IMAGE_SIZE_INQ Format_7 Mode_0 value.

This register normally outputs the MAX_IMAGE_SIZE_INQ For-
mat_7 Mode_0 value.

Note

This is the value given in the specifications tables under **Picture size (max.)** in Chapter Specifications on page 24.

Register	Name	Field	Bit	Description
0xF1000200 MAX_RESOLUTIO	MAX_RESOLUTION	MaxHeight	[015]	Sensor height (read only)
		MaxWidth	[1631]	Sensor width (read only)

Table 93: Advanced register: Maximum resolution inquiry

Time base

Corresponding to IIDC, exposure time is set via a 12-bit value in the corresponding register (SHUTTER_INQ [51Ch] and SHUTTER [81Ch]).

This means that a value in the range of 1 to 4095 can be entered.

Marlin cameras use a time-base which is multiplied by the shutter register value. This multiplier is configured as the time base via the TIMEBASE register.

Register	Name	Field	Bit	Description
0xF1000208	TIMEBASE	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[127]	Reserved
		Timebase_ID	[2831]	See Table 95: Timebase ID on page 184

Table 94: Advanced register: Time base

The time base IDs 0-9 are in bits 28 to 31. See Table 95: Timebase ID on page 184. Refer to the following table for code.

Default time-base is 20 μs : This means that the integration time can be changed in 20 μs increments with the shutter control.

Note

Time base can only be changed when the camera is in idle state and becomes active only after setting the shutter value.

The **ExpOffset** field specifies the camera specific exposure time offset in microseconds (μ s). This time (which should be equivalent to Table 61: Camera-specific exposure time offset on page 128) has to be added to the exposure time (set by any shutter register) to compute the real exposure time.

The **ExpOffset** field might be zero for some cameras: this has to be assumed as an unknown exposure time offset (according to former software versions).

	Timebase [µs]	ID
	1	0
	2	1
	5	2
	10	3
Default value	20	4
	50	5

Table 95: Timebase ID

ID	Timebase [µs]				
6	100				
7	200				
8	500				
9	1000				

Table 95: Timebase ID

Note

 $(\mathbf{\hat{I}})$

The ABSOLUTE VALUE CSR register, introduced in IIDC V1.3, is not implemented.

Extended shutter

The exposure time for long-term integration of up to 67 sec. can be entered with μ s-precision via the EXTENDED_SHUTTER register.

Register	Name	Field	Bit	Description
0xF100020C	EXTD_SHUTTER	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[1 5]	Reserved
		ExpTime	[631]	Exposure time in µs

Table 96: Advanced register: Extended shutter

The longest exposure time, 3FFFFFh, corresponds to 67.11 sec.

- **(i)**
- Exposure times entered via the 81Ch register are mirrored in the extended register, but not vice versa.
- Changes in this register have immediate effect, even when camera is transmitting.
- Extended shutter becomes inactive after writing to a format/mode/framerate register.
- Extended shutter setting will thus be overwritten by the normal timebase/shutter setting after Stop/Start of Fire-View or FireDemo.

Test images

Bits **8-14** indicate which test images are saved. Setting bits **28-31** activates or deactivates existing test images.

- auto gain
- auto shutter
- auto white balance

Register	Name	Field	Bit	Description
0xF1000210	TEST_IMAGE	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[17]	Reserved
		Image_Inq_1	[8]	Presence of test image 1 0: N/A 1: Available
		Image_Inq_2	[9]	Presence of test image 2 0: N/A 1: Available
		Image_Inq_3	[10]	Presence of test image 3 0: N/A 1: Available
		Image_Inq_4	[11]	Presence of test image 4 0: N/A 1: Available
		Image_Inq_5	[12]	Presence of test image 5 0: N/A 1: Available
		Image_Inq_6	[13]	Presence of test image 6 0: N/A 1: Available
		Image_Inq_7	[14]	Presence of test image 7 0: N/A 1: Available
			[1527]	Reserved
		TestImage_ID	[2831]	0: No test image active 1: Image 1 active 2: Image 2 active

Table 97: Advanced register: Test image

Sequence control

It is possible to make certain settings for a sequence of images beforehand by using this register.

Register	Name	Field	Bit	Description
0xF1000220	SEQUENCE_CTRL	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[14]	Reserved
		AutoRewind	[5]	
		ON_OFF	[6]	Enable/Disable this feature
			[715]	Reserved
		MaxLength	[1623]	Maximum possible length of a sequence (read only)
		SeqLength	[2431]	Length of the sequence
0xF1000224	SEQUENCE_PARAM		[04]	Reserved
		ApplyParameters	[5]	Apply settings to selected image of sequence; auto-reset
		IncImageNo	[6]	Increment ImageNo after ApplyParameters has finished
			[723]	Reserved
		ImageNo	[2431]	Number of image within a sequence

Table 98: Sequence control register

Look-up tables (LUT)

Load the look-up tables to be used into the camera and choose the look-up table number via the **LutNo** field. Now you can activate the chosen LUT via the LUT_C-TRL register.

The LUT_INFO register indicates how many LUTs the camera can store and shows the maximum size of the individual LUTs.

The possible values for **LutNo** are 0..n-1, whereas n can be determined by reading the field **NumOfLuts** of the LUT_INFO register.

Register	Name	Field	Bit	Description
0xF1000240	LUT_CTRL	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[15]	Reserved
		ON_OFF	[6]	Enable/Disable this feature
			[725]	Reserved
		LutNo	[2631]	Use look-up table with LutNo number
0xF1000244	LUT_MEM_CTRL	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[14]	Reserved
		EnableMemWR	[5]	Enable write access
			[67]	Reserved
		AccessLutNo	[815]	
		AddrOffset	[1631]	byte
0xF1000248	LUT_INFO	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[17]	Reserved
		NumOfLuts	[815]	Maximum number of look-up tables
		MaxLutSize	[1631]	Maximum look-up table size (bytes)

Table 99: Advanced register: LUT

Shading correction

Owing to technical circumstances, the interaction of recorded objects with one another, optical effects and lighting non-homogeneities may occur in the images.

Because these effects are normally not desired, they should be eliminated as far as possible in subsequent image editing. The camera has automatic shading correction to do this.

Provided that a shading image is present in the camera, the **on/off** bit can be used to enable shading correction.

The **on/off** and **ShowImage** bits must be set for saved shading images to be displayed.

Always make sure that the shading image is saved at the highest resolution of the camera. If a lower resolution is chosen and ShowImage is set to **true**, the image will not be displayed correctly.

Register	Name	Field	Bit	Description
0xF1000250	SHDG_CTRL	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
		BuildError	[1]	Could not built shading image
			[23]	Reserved
		ShowImage	[4]	Show shading data as image
		BuildImage	[5]	Build a new shading image
		ON_OFF	[6]	Shading on/off
		Busy	[7]	Build in progress
			[823]	Reserved
		GrabCount	[2431]	Number of images
0xF1000254	SHDG_MEM_CTRL	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[14]	Reserved
		EnableMemWR	[5]	Enable write access
		EnableMemRD	[6]	Enable read access
			[7]	Reserved
		AddrOffset	[831]	In bytes
0xF1000258	SHDG_INFO	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[17]	Reserved
		MaxImageSize	[831]	Maximum shading image size (in bytes)

Table 100: Advanced register: Shading

Deferred image transport

Using the register, the sequence of recording and the transfer of the images can be paused. Setting **HoldImg** prevents transfer of the image. The images are stored in **ImageFIFO**.

The images indicated by NumOfImages are sent by setting the SendImage bit.

When **FastCapture** is set (in Format_7 only), images are recorded at the highest possible frame rate.

Register	Name	Field	Bit	Description	
0xF1000260	DEFERRED_TRANS	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)	
			[14]	Reserved	
			SendImage	[5]	Send NumOfImages now (auto reset)
		HoldImg	[6]	Enable/Disable deferred transport mode	
			FastCapture	[7]	Enable/disable fast capture mode
			[815]	Reserved	
		FiFoSize	[1623]	Size of FIFO in number of images (read only)	
		NumOfImages	[2431]	Write: Number of images to send	
				Read: Number of images in buffer	

Table 101: Advanced register: Deferred image transport

Frame information

This register can be used to double-check the number of images received by the host computer against the number of images which were transmitted by the camera. The camera increments this counter with every FrameValid signal. This is a mirror of the frame counter information found at 0xF1000610.

Register	Name	Field	Bit	Description
0xF1000270	FRAMEINFO	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
		ResetFrameCnt	[1]	Reset frame counter
			[231]	Reserved
0xF1000274	FRAMECOUNTER	FrameCounter	[031]	Number of captured frames since last reset

Table 102: Frame information register

The **FrameCounter** is incremented when an image is read out of the sensor.

The **FrameCounter** does not indicate whether an image was sent over the IEEE 1394 bus or not.

Input/output pin control

- See Chapter Input/output pin control on page 47
- See Chapter IO_INP_CTRL 1-2 on page 47
- See Chapter IO_OUTP_CTRL 1-2 on page 51
- See Chapter Output modes on page 52

Delayed Integration Enable (IntEna)

A delay time between initiating exposure on the sensor and the activation edge of the **IntEna** signal can be set using this register. The **on/off** flag activates/ deactivates integration delay. The time can be set in μ s in **DelayTime**.

• Please note that only one edge is delayed.

• If **IntEna_Out** is used to control an exposure, it is possible to have a variation in brightness or to precisely time a flash.

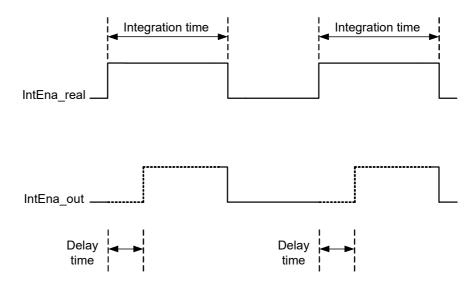


Figure 70: Delayed integration timing

Register	Name	Field	Bit	Description
0xF1000340	0 IO_INTENA_DELAY	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Enable/Disable integration enable delay
			[711]	Reserved
		DELAY_TIME	[1231]	Delay time in µs

Table 103: Advanced register: Delayed Integration Enable (IntEna)

Auto shutter control

The table below illustrates the advanced register for **auto shutter control**. The purpose of this register is to limit the range within which auto shutter operates.

Register	Name	Field	Bit	Description
0xF1000360	AUTOSHUTTER_CTRL	Presence_Inq	[0]	Indicates presence of this fea- ture (read only)
			[131]	Reserved
0xF1000364	AUTOSHUTTER_LO	Min Value	[031]	Minimum value
0xF1000368	AUTOSHUTTER_HI	Max Value	[031]	Maximum value

Table 104: Advanced register: Auto shutter control

Marlin Technical Manual V.2.7.2

Auto gain control

The table below illustrates the advanced register for **auto gain control**.

Register	Name	Field	Bit	Description
0xF1000370	AUTOGAIN_CTRL	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[13]	Reserved
		Max Value	[415]	Maximum auto gain value
			[1619]	Reserved
		Min value	[2031]	Minimum auto gain value

Table 105: Advanced register: Auto gain control

MinValue and **MaxValue** limits the range the auto gain feature is allowed to use for the regulation process. Both values are initialized with the minimum and maximum value defined in the standard GAIN_INQ register.

Changing the **auto gain range** might not affect the regulation, if the regulation is in a stable condition and no other condition affecting the image brightness is changed.

If both auto gain and auto shutter are enabled and if the gain is at its lower boundary and shutter regulation is in progress, decreasing the lower auto gain boundary has no effect on auto gain/shutter regulation as long as auto shutter regulation is active.

Both values can only be changed within the range defined by the standard GAIN_INQ register.

Autofunction AOI

AUTOFNC_AOI affects the auto shutter, auto gain and auto white balance features and is independent of the Format7 AOI settings. If this feature is switched off the work area position and size follow the current active image size.

As a reference it uses a grid of at least 300 samples equally spread over the area of interest or a fraction of it. The position and size of the control area (Auto_-Function_AOI) can be set via the following advanced registers.

Register	Name	Field	Bit	Description
0xF1000390	AUTOFNC_AOI	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[13]	Reserved
		ShowWorkArea	[4]	Show work area
			[5]	Reserved
		ON_OFF	[6]	Enable/Disable AOI
			[731]	Reserved
0xF1000394	AF_AREA_POSITION	Left	[015]	Work area position (left coor- dinate)
		Тор	[1631]	Work area position (top coor- dinate)
0xF1000398	AF_AREA_SIZE	Width	[015]	Width of work area size
		Height	[1631]	Height of work area size

Table 106: Advanced register: Autofunction AOI

The possible increment of the work area position and size is 128 pixel. The camera automatically adjusts your settings to allowed values.

The possible increment of this work-area position and size is 128 pixels. The camera automatically adjusts the settings to allowed values (see below for valid values):

Region	Valid Values
Left, Top	0, 128, 256, 384, 512, 768, 1024
Width, Height	128, 256, 384, 512, 768, 1024

Table 107: Legal values for AF_AREA_SIZE

Due to the fact that the active image size might not be dividable by 128 without a remainder, the auto function AOI work-area size might be greater.

This allows for the positioning of the work-area to be at the bottom of the active image.

E.g. if the active image size is 640 x 480 pixel the camera accepts a maximum of 640 x 512 pixel as the auto function AOI work area (if the control area position is 0:0).

Another case is for outdoor applications: the sky will be excluded from the generation of the reference levels.

Color correction

Register	Name	Field	Bit	Description
0xF10003A0	COLOR_CORR	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Color correction on/off
				default: on
				Write: 02000000h to switch color correction OFF
				Write: 00000000h to switch color correction ON
			[731]	Reserved

Table 108: Advanced register: Color correction

For an explanation of the color correction matrix and for further information read Chapter Color interpolation and correction on page 87.

Trigger delay

Register	Name	Field	Bit	Description
0xF1000400	TRIGGER_DELAY	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Trigger delay on/off
			[710]	Reserved
		DelayTime	[1131]	Delay time in µs

Table 109: Advanced register: Trigger Delay

The advanced register allows start of the integration to be delayed via **DelayTime** by max. $2^{21} \mu s$, which is max. 2.1 s after a trigger edge was detected.

Note Trigger delay works with external trigger modes only.

Mirror image

The table below illustrates the advanced register for Mirror image.

Register	Name	Field	Bit	Description
0xF1000410	MIRROR_IMAGE	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	Mirror image on/off
				1: on 0: off
				Default: off
			[731]	Reserved

Table 110: Advanced register: Mirror

Soft Reset

Register	Name	Field	Bit	Description
0xF1000510	SOFT_RESET	Presence Inquiry	[0]	Read only
			[15]	Reserved
		Reset	[6]	Initiate reset
			[719]	Reserved
		Delay	[2031]	Delay reset in 10 ms steps

Table 111: Advanced register: Soft reset

The SOFT_RESET feature is similar to the INITIALIZE register, with the following differences:

- 1 or more bus resets will occur
- the FPGA will be rebooted

The reset can be delayed by setting the **Delay** to a value unequal to 0 - the delay is defined in 10 ms steps.

Note

When SOFT_RESET has been defined, the camera will respond to further read or write requests but will not process them.

Secure image signature (SIS)

Definition Secure image signature (SIS) is the synonym for data, which is inserted into an image to improve or check image integrity.

With the new firmware V3.03, all CCD Marlin models can insert

- Time stamp (1394 bus cycle time at the beginning of integration)
- Frame counter (frames read out of the sensor)
- Trigger counter (external trigger seen only)

into a selectable line position within the image. **Time stamp**, **frame counter** and **trigger counter** are available as advanced registers to be read out directly.

Advanced register: time stamp

The **time stamp** feature is controlled by the following advanced feature register:

Register	Name	Field	Bit	Description
0xF1000600	TIMESTAMP	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[15]	Reserved
		ON_OFF	[6]	SIS (time stamp) on/off
			[7]	Reserved
		Format_0_Inq	[8]	Presence of Format_0
				0: n/a 1: available
			[9]	Reserved
			[10]	Reserved
			[11]	Reserved
			[12]	Reserved
			[1315]	Write as 0.
				Reserved
		LinePos	[1631]	Line position of SIS (time stamp)

Table 112: Advanced register: Time stamp

Enabling this feature, time stamp data will be inserted into any captured image. The size of the time stamp depends on the selected time stamp format.

The LinePos field indicates at which line the stamp will be inserted.

Enter a

- **positive value** from 0..HeightOfImage to specify a position relative to the top of the image. LinePos=0 specifies the very first image line.
- **negative value** from -1..-HeightOfImage to specify a position relative to the bottom of the image. LinePos=-1 specifies the very last image line.

Note	SIS outside the visible image area:
()	For certain Format_7 modes the image frame transported may contain padding (filling) data at the end of the transported frame. Setting LinePos=HeightOfImage places the stamp in this padding data area, outside the visible area (invisible SIS).
	If the transported image frame does not contain any padding data the camera will not relocate the SIS to the visible area automatically (no SIS).
	Take in mind that the accuracy of the time stamp might be affected by asynchronous traffic – mainly if image settings are changed.
Note	The IEEE 1394 cycle counter will be inserted into the very first 4 bytes/pixels of a line.

Cycle offset	Cycles	Seconds
Cycle offset 12 bit	Cycle count 13 bit	Second count 7 bit
03071 cycle offsets (40.69 ns)	0 7999 cycles	0 127 seconds
24.576 MHz cycle timer counter	8000 Hz cycle timer counter	1 Hz cycle timer counter

Table 113: 32-bit cycle timer layout

Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
					Сус	cle offs	set 12	bit					(Cycle co	ount	•

Bit	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
			•	Cycle	e coun	t 13 bi	t					Secon	d cour	ıt 7 bit		

Table 114: Cycle timer layout

Advanced register: frame counter

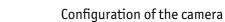
The **frame counter** feature is controlled by the following advanced feature register:

Register	Name	Field	Bit	Description
0xF1000610	FRMCNT_STAMP	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Reset	[1]	Reset frame counter
			[25]	Reserved
		ON_OFF	[6]	SIS (time stamp) on/off
			[7]	Reserved
			[815]	Reserved
		LinePos	[1631]	Line position of SIS (time stamp)
0xF1000614	FRMCNT		[031]	Frame counter

Table 115: Advanced register: Frame counter

Having this feature enabled, the current **frame counter** value (images read out of the sensor, equivalent to # FrameValid) will be inserted as a 32-bit integer value into any captured image.

Setting the **Reset** flag to 1 resets the frame counter to 0 -the **Reset** flag is self-cleared.


The **ON_OFF** and **LinePos** fields are simply mirrors of the time stamp feature. Settings of these fields are applied to all image stamp features.

Note

The 4 bytes of the **frame counter** value will be inserted as the **5th to 8th byte of a line**.

Additionally there is a register for direct read out of the frame counter value.

Advanced register: trigger counter

The **trigger counter** feature is controlled by the following advanced feature register:

Register	Name	Field	Bit	Description
0xF1000620	TRGCNT_STAMP	Presence_Inq	[0]	Indicates presence of this feature (read only)
		Reset	[1]	Reset trigger counter
			[25]	Reserved
		ON_OFF	[6]	SIS (time stamp) on/off
			[7]	Reserved
			[815]	Reserved
		LinePos	[1631]	Line position of SIS (time stamp)
0xF1000624	TRGCNT		[031]	Trigger counter

Table 116: Advanced register: Trigger counter

Having this feature enabled, the current **trigger counter** value (external trigger seen by hardware) will be inserted as a 32-bit integer value into any captured image.

Setting the **Reset** flag to 1 resets the **trigger counter** to 0 – the Reset flag is self-cleared.

The **ON_OFF** and **LinePos** fields are simply mirrors of the time stamp feature. Settings of these fields are applied to all image stamp features.

Note

The 4 bytes of the **trigger counter** value will be inserted as the **9th to 12th byte of a line**.

Additionally there is a register for direct read out of the **trigger counter** value.

Where to find time stamp, frame counter and trigger counter in the image

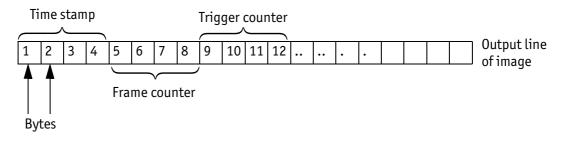


Figure 71: SIS in the image

User profiles

Definition Within the IIDC specification **user profiles** are called **memory channels**. Often they are called **user sets**. In fact these are different expressions for the following: storing camera settings into a non-volatile memory inside the camera.

With firmware 3.03, cameras can store up to three user profiles (plus the factory default) nonvolatile in the camera.

User profiles can be programmed with the following advanced feature register:

Register	Name	Field	Bit	Description
0xF1000550	USER_PROFILE	Presence_Inq	[0]	Indicates presence of this feature (read only)
			[17]	Reserved
		SaveProfile	[8]	Save settings to profile
		RestoreProfile	[9]	Load settings from profile
		SetDefaultID	[10]	Set profile ID as default
			[1119]	Reserved
		ErrorCode	[2023]	Error code
				See Table 118: User profile: Error codes on page 202.
			[2427]	Reserved
		ProfileID	[2831]	ProfileID (memory channel)

Table 117: Advanced register: User profiles

In general this advanced register is a wrapper around the standard memory channel registers with some extensions. In order to query the number of available user profiles please check the **Memory_Channel** field of the **BASIC_-FUNC_INQ** register at offset **0x400** (see IIDC V1.3x for details).

The **ProfileID** is equivalent to the memory channel number and specifies the profile number to store settings to or to restore settings from. In any case profile #0 is the hard-coded factory profile and cannot be overwritten.

After an initialization command, startup or reset of the camera, the **ProfileID** also indicates which profile was loaded on startup, reset or initialization.

• The default profile is the profile that is loaded on powerup or an INITIALIZE command.

A save or load operation delays the response of the camera until the operation is completed. At a time only one operation can be performed.

Store To store the current camera settings into a profile:

- 1. Write the desired **ProfileID** with the **SaveProfile** flag set.
- 2. Read back the register and check the **ErrorCode** field.
- **Restore** To restore the settings from a previous stored profile:
 - 1. Write the desired **ProfileID** with the **RestoreProfile** flag set.
 - 2. Read back the register and check the **ErrorCode** field.
- Set default To set the default profile to be loaded on startup, reset or initialization
 - 1. Write the desired **ProfileID** with the **SetDefaultID** flag set.
 - 2. Read back the register and check the **ErrorCode** field.

Factory default To go back to the factory default profile:

- 1. Select **ProfileID=0** and toggle the **SetDefaultID** flag set.
- 2. Read back the register and check the **ErrorCode** field.

Error codes

ErrorCode #	Description
0x00	No error
0x01	Profile data corrupted
0x02	Camera not idle during restore operation
0x03	Feature not available (feature not present)
0x04	Profile doesn't exist
0x05	ProfileID out of range
0x06	Restoring the default profile failed
0x07	Loading LUT data failed
0x08	Storing LUT data failed

Table 118: User profile: **Error codes**

Reset of error codes

The **ErrorCode** field is set to zero on the next write access.

You may also reset the **ErrorCode**

• by writing 0000000h to the **USER_PROFILE** register.

Note

- A profile save operation automatically disables capturing of images.
- A profile save or restore operation is an uninterruptable (atomic) operation the write response (of the asynchronous write cycle) will be sent after completion of the operation.
- Restoring a profile will not overwrite other settings than listed above.
- If a restore operation fails or the specified profile does not exist, all registers will be overwritten with the hardcoded factory defaults (profile #0).
- Data written to this register is not reflected in the standard memory channel registers.

Stored settings

The following table shows the settings stored inside a profile:

Standard registers	Standard registers (Format_7)	Advanced registers
Cur_V_Frm_Rate	IMAGE_POSITION (AOI)	TIMEBASE
Cur_V_Mode	IMAGE_SIZE (AOI)	EXTD_SHUTTER
Cur_V_Format	COLOR_CODING_ID	IO_INP_CTRL
ISO_Channel	BYTES_PER_PACKET	IO_OUTP_CTRL
ISO_Speed		IO_INTENA_DELAY
BRIGHTNESS		AUTOSHUTTER_CTRL
AUTO_EXPOSURE (Target grey level)		AUTOSHUTTER_LO
SHARPNESS		AUTOSHUTTER_HI
WHITE_BALANCE (+ auto on/off)		AUTOGAIN_CTRL
HUE (+ hue on)		AUTOFNC_AOI (+ on/off)
SATURATION (+ saturation on)		COLOR_CORR (on/off)
GAMMA (+ gamma on)		TRIGGER_DELAY
SHUTTER (+ auto on/off)		MIRROR_IMAGE
GAIN		HIGH_SNR
TRIGGER_MODE		TIMESTAMP
TRIGGER_DELAY		LUT_CTRL (LutNo; ON_OFF is not saved)
ABS_GAIN		LUT_DATA
ABS_TRIGGER_DELAY		

Table 119: User profile: stored settings

The user can specify which user profile will be loaded upon startup of the camera.

This frees the user software from having to restore camera settings, that differ from default, after every startup. This can be especially helpful if third party software is used which may not give easy access to certain advanced features or may not provide efficient commands for quick writing of data blocks into the camera.

GPDATA_BUFFER

GPDATA_BUFFER is a register that regulates the exchange of data between camera and host for programming the LUT and the upload/download of the shading image.

GPDATA_INFO Buffer size query

GPDATA_BUFFER indicates the actual storage range

Register	Name	Field	Bit	Description
0xF1000FFC	GPDATA_INFO		[015]	Reserved
		BufferSize	[1631]	Size of GPDATA_BUFFER (byte)
0xF1001000				
	GPDATA_BUFFER			
0xF10017FC				

Table 120: Advanced register: GPData buffer

- Read the BufferSize before using.
 - GPDATA_BUFFER can be used by only one function at a time.

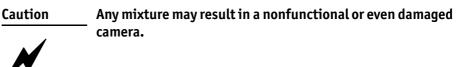
Little endian vs. big endian byte order

- Read/WriteBlock accesses to GPDATA_BUFFER are recommended, to read or write more than 4 byte data. This increases the transfer speed compared to accessing every single quadlet.
- The big endian byte order of the 1394 bus is unlike the little endian byte order of common operating systems (Intel PC). Each quadlet of the local buffer, containing the LUT data or shading image for instance, has to be swapped bytewise from little endian byte order to big endian byte order before writing on the bus.

Bit depth	little endian ⇔ big endian	Description
8 bit	L0 L1 L2 L3 ⇔ L3 L2 L1 L0	L: low byte
16 bit	L0 H0 L1 H1 ⇔ H1 L1 H0 L0	H: high byte

Table 121: Swapped first quadlet at address offset 0

Firmware update


Firmware updates can be carried out without opening the camera.

You need:

- Programming cable E1000666
- Software AVTCamProg
- PC or laptop with serial interface (RS 232)
- Documentation for firmware update

Please make sure that the new Marlin firmware matches with the serial numbering. This means Marlins with serial numbers xx/yy-6zzzzzz need **different** firmware than Marlins with other serial numbers.

Note Please contact your local dealer for further information.

Appendix

Sensor position accuracy of Marlin cameras

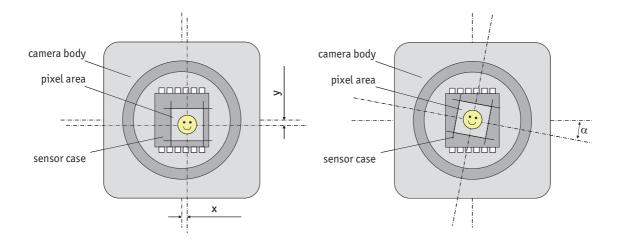


Figure 72: Sensor position accuracy

Criteria	Subject	Properties
Method of Positioning		Optical alignment of the photo sensitive sensor area into the camera front module (lens mount front flange)
Reference Points	Sensor	Center of the pixel area (photo sensitive cells)
	Camera	Center of the lens mount
Accuracy	x/y	+/- 0.1 mm (sensor shift)
	Z	+0/-50 μm (optical back focal length)
	α	+/-0.5° (center rotation as the deviation from the parallel to the camera bottom)

Table 122: Criteria of Allied Vision sensor position accuracy

x/y tolerances between C-Mount hole and pixel area may be higher.

Index

Numerics

0xF0F00830 (bulk trigger)	124
0xF1000208 (time base)	184
0xF100020C (extended shutter)	185
0xF1000210 (test images)	186
0xF1000220 (sequence control)	187
0xF1000220 (sequence mode)	
0xF1000240 (LUT)	188
0xF1000250 (shading)	
0xF1000260 (deferred image transport	
0xF1000270 (frame information)	191
0xF1000340 (Delayed IntEna)	
0xF1000360 (auto shutter control)	
0xF1000370 (auto gain control)	193
0xF1000390 (autofunction AOI)	194
0xF10003A0 (color correction)	
0xF1000400 (trigger delay)	195
0xF1000410 (mirror image)	
0xF1000510 (soft reset)	
0xF1000550 (user profiles/memory	
nels/user sets)	
0xF1000600 (time stamp)	
0xF1000610 (frame counter)	
0xF1000620 (trigger counter)	
0xF1000FFC (GPData buffer)	205
2 out of 4 H+V sub-sampling (color)	
drawing	85
2 x full binning	
drawing	84
2 x horizontal binning	
drawing	83
2 x vertical binning	
5	
drawing 32-bit cycle timer layout	82

Α

Abs_Control (Field)	60, 65, 67, 68, 70
Abs_Control_Inq (Field) .	
Access_Control_Register.	167
accuracy	
sensor position	207
ActivVision Tools	73

Advanced feature inquiry (advanced register) 182 Advanced features 177 activate 179 base address 167 inquiry 165 advanced register Advanced feature inquiry Advo gain control 193 Auto gain control 192 Auto shutter control 192 Autofunction AOI 194 Color correction 195 Deferred image transport 190 Delayed Integration Enable (IntEna) 192 Extended shutter 130 Frame counter 199 GPData buffer 205 LUT 188 Max. resolution 183 Mirror image 196 Sequence mode 141 Shading 189 Soft reset 196 Time stamp 197 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_SIZE 194 Algorithm correctin data 74 A_MODE	AddrOffset
Advanced feature inquiry (advanced register)182Advanced features177activate179base address167inquiry165advanced registerAdvanced feature inquiryAuto gain control193Auto shutter control192Autofunction AOI194Color correction195Deferred image transport190Delayed Integration Enable (IntEna)192Extended shutter130Frame counter199GPData buffer205LUT188Max. resolution183Mirror196Sequence mode141Shading189Soft reset196Ting base186Time base186Time stamp197Trigger counter200Trigger delay195User profiles201Version information180AF_AREA_POSITION194Algorithm74A_MODE (Field)60, 65, 67, 68, 70	
182Advanced features177activate179base address167inquiry165advanced registerAdvanced feature inquiryAuto gain control193Auto shutter control192Autofunction AOI194Color correction195Deferred image transport190Delayed Integration Enable (IntEna)192Extended shutter130Frame counter199GPData buffer205LUT188Max. resolution183Mirror196Sequence mode141Shading189Soft reset196Time base186Time stamp197Trigger counter200Version information180AF_AREA_POSITION194AF_AREA_SIZE194legal values194Algorithm74A_MODE (Field)60, 65, 67, 68, 70	
Advanced features177activate179base address167inquiry165advanced registerAdvanced feature inquiryAuto gain control193Auto shutter control192Autofunction AOI194Color correction195Deferred image transport190Delayed Integration Enable (IntEna)192Extended shutter130Frame counter199GPData buffer205LUT188Max. resolution183Mirror image196Sequence mode141Shading189Soft reset196Time base184Time stamp197Trigger counter200Trigger delay195User profiles201Version information180AF_AREA_SIZE194legal values194Algorithm74A_MODE (Field)60, 65, 67, 68, 70	
activate 179 base address 167 inquiry 165 advanced register Advanced feature inquiry 182 Auto gain control 193 Auto shutter control 192 Autofunction AOI 194 Color correction 195 Deferred image transport 190 Delayed Integration Enable (IntEna) 192 Extended shutter 130 Frame counter 199 GPData buffer 205 LUT 188 Max. resolution 183 Mirror image 196 Sequence mode 141 Shading 189 Soft reset 196 Time base 186 Time base 184 Time stamp 197 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 Algorithm 194 Legal values 194 Algorithm<	-
base address 167 inquiry	
inquiry	
advanced register Advanced feature inquiry	base address167
Advanced feature inquiry.182Auto gain control193Auto shutter control192Autofunction AOI194Color correction195Deferred image transport190Delayed Integration Enable (IntEna)192Extended shutter130Frame counter199GPData buffer205LUT188Max. resolution183Mirror196Sequence mode141Shading189Soft reset196Test images186Time base184Time stamp197Trigger counter200Version information180AF_AREA_POSITION194AF_AREA_SIZE194Legal values194Algorithm74A_M_MODE (Field)60, 65, 67, 68, 70	inquiry165
Auto gain control193Auto shutter control192Autofunction AOI194Color correction195Deferred image transport190Delayed Integration Enable (IntEna)192Extended shutter130Frame counter199GPData buffer205LUT188Max. resolution183Mirror196Sequence mode141Shading189Soft reset196Test images186Time base184Time stamp197Trigger counter200Trigger delay195User profiles201Version information180AF_AREA_SIZE194Legal values194Algorithm74A_M_MODE (Field)60, 65, 67, 68, 70	advanced register
Auto gain control193Auto shutter control192Autofunction AOI194Color correction195Deferred image transport190Delayed Integration Enable (IntEna)192Extended shutter130Frame counter199GPData buffer205LUT188Max. resolution183Mirror196Sequence mode141Shading189Soft reset196Test images186Time base184Time stamp197Trigger counter200Trigger delay195User profiles201Version information180AF_AREA_SIZE194Legal values194Algorithm74A_M_MODE (Field)60, 65, 67, 68, 70	Advanced feature inquiry182
Auto shutter control192Autofunction AOI194Color correction195Deferred image transport190Delayed Integration Enable (IntEna)192Extended shutter130Frame counter199GPData buffer205LUT188Max. resolution183Mirror image196Sequence mode141Shading189Soft reset196Time stamp197Trigger counter200Trigger delay195User profiles201Version information180AF_AREA_SIZE194Algorithm194AC_M_MODE (Field)60, 65, 67, 68, 70	
Autofunction AOI 194 Color correction 195 Deferred image transport 190 Delayed Integration Enable (IntEna) 192 Extended shutter 185 extended shutter 130 Frame counter 199 GPData buffer 205 LUT 188 Max. resolution 183 Mirror 196 Sequence mode 141 Shading 189 Soft reset 196 Test images 186 Time base 184 Time stamp 197 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 AF_AREA_SIZE 194 legal values 194 Algorithm 74 A_M_MODE (Field) 60, 65, 67, 68, 70	
Color correction 195 Deferred image transport 190 Delayed Integration Enable (IntEna) 192 Extended shutter 185 extended shutter 130 Frame counter 199 GPData buffer 205 LUT 188 Max. resolution 183 Mirror 196 Sequence mode 141 Shading 189 Soft reset 196 Test images 186 Time base 184 Time stamp 197 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 Algorithm 194 Legal values 194 Algorithm 74 A_M_MODE (Field) 60, 65, 67, 68, 70	
Deferred image transport 190 Delayed Integration Enable (IntEna). 192 Extended shutter 185 extended shutter 130 Frame counter 199 GPData buffer 205 LUT 188 Max. resolution 183 Mirror 196 Sequence mode 141 Shading 189 Soft reset 196 Time base 186 Time stamp 197 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 Algorithm 194 correction data 74 A_M_MODE (Field) 60, 65, 67, 68, 70	
Delayed Integration Enable (IntEna). 192 Extended shutter 130 Frame counter 199 GPData buffer 205 LUT 188 Max. resolution 183 Mirror 196 Sequence mode 141 Shading 189 Soft reset 196 Test images 187 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 legal values 194 Algorithm correction data 74 A_MODE (Field)	
Extended shutter 185 extended shutter 130 Frame counter 199 GPData buffer 205 LUT 188 Max. resolution 183 Mirror 196 Sequence mode 141 Shading 189 Soft reset 196 Test images 186 Time base 184 Time stamp 197 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 legal values 194 Algorithm 194 Correction data 74 A_M_ODE (Field) 60, 65, 67, 68, 70	
extended shutter 130 Frame counter 199 GPData buffer 205 LUT 188 Max. resolution 183 Mirror 196 Mirror image 196 Sequence mode 141 Shading 189 Soft reset 196 Test images 186 Time base 184 Time stamp 197 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 legal values 194 Algorithm 194 A_MODE (Field) 60, 65, 67, 68, 70	
Frame counter 199 GPData buffer 205 LUT 188 Max. resolution 183 Mirror 196 Mirror image 196 Sequence mode 141 Shading 189 Soft reset 196 Test images 186 Time base 184 Time stamp 197 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 legal values 194 Algorithm 74 A_M_MODE (Field) 60, 65, 67, 68, 70	
GPData buffer 205 LUT 188 Max. resolution 183 Mirror 196 Mirror image 196 Sequence mode 141 Shading 189 Soft reset 196 Test images 186 Time base 184 Time stamp 197 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 legal values 194 Algorithm 74 A_M_MODE (Field) 60, 65, 67, 68, 70	
LUT	
Max. resolution 183 Mirror 196 Mirror image 196 Sequence mode 141 Shading 189 Soft reset 196 Test images 186 Time base 184 Time stamp 197 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 legal values 194 Algorithm 194 correction data 74 A_M_MODE (Field) 60, 65, 67, 68, 70	
Mirror 196 Mirror image. 196 Sequence mode 141 Shading 189 Soft reset 196 Test images 186 Time base 184 Time stamp 197 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 legal values 194 Algorithm 74 A_M_MODE (Field) 60, 65, 67, 68, 70	
Mirror image. 196 Sequence mode 141 Shading 189 Soft reset 196 Test images 186 Time base 184 Time stamp 197 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 legal values 194 Algorithm 194 A_M_MODE (Field) 60, 65, 67, 68, 70	
Sequence mode 141 Shading 189 Soft reset 196 Test images 186 Time base 184 Time stamp 197 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 legal values 194 Algorithm 74 A_M_MODE (Field) 60, 65, 67, 68, 70	
Shading 189 Soft reset 196 Test images 186 Time base 184 Time stamp 197 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 legal values 194 Algorithm 194 A_M_MODE (Field) 60, 65, 67, 68, 70	-
Soft reset 196 Test images 186 Time base 184 Time stamp 197 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 legal values 194 Algorithm 194 A_M_MODE (Field) 60, 65, 67, 68, 70	
Test images 186 Time base 184 Time stamp 197 Trigger counter 200 Trigger delay 195 User profiles 201 Version information 180 AF_AREA_POSITION 194 legal values 194 Algorithm 194 A_M_MODE (Field) 60, 65, 67, 68, 70	5
Time base184Time stamp197Trigger counter200Trigger delay195User profiles201Version information180AF_AREA_POSITION194AF_AREA_SIZE194legal values194Algorithm194correction data74A_M_MODE (Field)60, 65, 67, 68, 70	Soft reset196
Time stamp.197Trigger counter200Trigger delay195User profiles201Version information180AF_AREA_POSITION194AF_AREA_SIZE194legal values194Algorithm194correction data74A_M_MODE (Field)60, 65, 67, 68, 70	Test images186
Trigger counter200Trigger delay195User profiles201Version information180AF_AREA_POSITION194AF_AREA_SIZE194legal values194Algorithm194correction data74A_M_MODE (Field)60, 65, 67, 68, 70	Time base184
Trigger delay	Time stamp197
User profiles	Trigger counter200
User profiles	Trigger delay195
AF_AREA_POSITION	
AF_AREA_POSITION	Version information
AF_AREA_SIZE194 legal values194 Algorithm correction data	
legal values 194 Algorithm 74 A_M_MODE (Field) 60, 65, 67, 68, 70	
Algorithm correction data	
correction data 74 A_M_MODE (Field) 60, 65, 67, 68, 70	-
A_M_MODE (Field) 60, 65, 67, 68, 70	5
amplification 60	amplification

analog color signal
auto exposure
limits 66 target grey level
Auto Exposure (CSR register)
auto gain
Auto gain control (advanced register) 193
auto shutter
auto shutter control
advanced register
Auto shutter control (advanced register).192
auto white balance
external trigger 62
auto white balance (AWB) 62
AUT0_EXPOSURE 68
AUTOFNC_AOI 63, 194
AUTOFNC_AOI positioning 63
Autofunction AOI (advanced register)194
AUTOGAIN_CTRL193
Auto_Inq 48
automatic generation
correction data73
AUTOSHUTTER_CTRL192
AUTOSHUTTER_HI192
AUTOSHUTTER_LO192
AVTCamProg206
AWB 62

В

bandwidth	96
affect frame rate	146
available	110
deferred image transport	137
FastCapture	139
frame rates	108
RGB8 format	90
save in RAW-mode	87
BAYER demosaicing	88
BAYER mosaic	87
Bayer to RGB	

color interpretation87
Binning 81
binning
full 84
horizontal83
vertical 82
black level
black value
blink codes 45
block diagram
AFE
color camera 58
block diagrams
cameras
BRIGHTNESS
Brightness
5
inquiry register166
register140
brightness
auto shutter 64
average67
decrease 66
descending143
effects139
IIDC register 69
increase 66, 69
level 73
LUT71
nonlinear71
reference 64, 67
setting 69
variation191
Brightness (CSR register) 70
Brightness Control166
Brightness_inq168
BRIGHTNESS_INQUIRY168
buffer
LUT
bulk trigger121, 123
Bus_Id149
Busy signal 50
C
Cable GND 42
camera dimensions 38
camera interfaces 42

Camera lenses 40
cameras
block diagram57
Marlin 20
Camera_Status_Register149
CDS 60
channel 55
color camera
block diagram 58
Color correction
color correction (advanced register)195
Color Correction (Field)182
Color correction (Field)182
color information
Color interpolation 88
Com (LED state)
common GND
inputs 43
common vcc
outputs 43
Compliance
EEA 21
USA 22
conformity
consequence
BAYER demosaicing
controlling
image capture121
Copyright
correction data
algorithm74
A0I
automatic generation73
requirements74
shading73
correlated double sampler 60
CSR149
CSR register
Auto Exposure
Brightness
cycle counter
Cycle timer layout198
cycle limer layoul

D

data block packet format

Index

data exchange buffer
LUT
data packets 54
data path 57
data payload size146
data_length 55
DCAM 19, 96, 149
deferred image transport137, 190
Deferred image transport (advanced register)
190
deferred transport143
Delayed Integration Enable (IntEna) (ad-
vanced register)192
Digital Camera Specification149
digital video information 55
digitization 60
digitizer72
document history 8

Е

edge mode (Trigger_Mode_0)	121
effective min. exp. time	
End of exposure	
error code	
user profiles	
error codes	
LED	45
error states	45
ExpOffset	
Exposure time	
exposure time	
81 Ch register	
example	
extended shutter	
FIF0	142
formula	
longest	
long-term integration	130
minimum	
ExpTime (Field)	
EXTD_SHUTTER	
extended shutter	
advanced register	130
FireDemo	

185
0, 185
185
121
185
130
43
46

F

FastCapture	
bandwidth	139
deferred image transport	190
false	139
only Format_7	139
FastCapture (Field)	
FireDemo	
Extended shutter	185
FirePackage	
additional checks image integrity	145
OHCI API software	
Firetool program	
FireView	
Extended shutter	185
firmware update	206
focal length	
MF-033/046/145/146	40
MF-080	41
MF-201	
FORMAT_7_ERROR_1	45
FORMAT_7_ERROR_2	
FOV	80
FPGA	
FPGA Boot error	45
Frame counter	197
frame counter145, 1	199
Frame counter (advanced register)	199
frame rates	
bandwidth1	108
bus speed	96
Format_71	12
Marlin models	96
maximum	96
MF-0331	13
MF-0461	14
MF-080	15

MF-145	118
MF-146	119
MF-201	120
tables	108
video mode 0	111
video mode 2	111
Frame valid	50
FrameCounter	191
Free-Run	134
Full binning	84
Fval	50
Fval signal	50

G

Gain 67
Pixel Gain Amplifier 59
gain
auto 67
auto exposure CSR 67
AUTOFNC_AOI 63
manual 69
manual gain range69
ranges 69
white balance 59
GAIN (Name)
GAIN (register) 61
gain CSR 69
gamma function
Gamma LUT 71
gamma LUT71
global shutter
GND for RS232 43
GPData buffer (advanced register)
GPDATA_BUFFER
GRAB_COUNT

Н

hardware trigger	49, 127
HoldImg	
field	
flag	
mode	138
set	
HoldImg (Field)	
Horizontal binning	83
horizontal mirror function	80

hue
offset 90
ICX-204AK
ICX-204AL
ICX-205AK
ICX-205AL
ICX-267AK
ICX-267AL
ICX-267AQ
ICX-414AL
ICX-414AQ
ICX-415AL
ICX-415AQ
IEEE 1394 19
IEEE 1394 connector 42
IEEE 1394 port
pin assignment 42
IEEE 1394 Trade Association149
IIDC 19, 96, 149
data structure 56
isochronous data block packet format. 54
pixel data 54
trigger delay 48
video data format 55
Y16
Y856
YUV41155
YUV422 55
IIDC V1.3121
image capture
controlling121
IMAGE_POSITION105, 106
IMAGE_SIZE105, 106
input
block diagram
configuration register
polarity setting
signals
Trigger (Mode)
input mode
input nioue
input/output pin control
Input/ode (Field)
inputs
inputs

common GND 43
general 46
ID
inverting
triggers
Inquiry register
basic function165
Integration Enable Signal 50
Integration Enable Signat
IntEna signal
IntEna_Delay
internal trigger121, 123
interpolation
BAYER demosaicing
Bayer demosaicing 88
Bayer to RGB 87
color
correction 87
IO_INP_CTRL1
IO_INP_CTRL2 47
I0_0UTP_CTRL1 51
I0_0UTP_CTRL2 51
isochronous blocks 55
isochronous channel number 55
Isochronous data block packet format 54
isochronous data packets 54
ISO_Enable
IsoEnable143
white balance
ISO Enable mode134
Iso_Enable mode
Multi-shot134
One-shot
0110 31101
J
jitter
at exposure start136
latching connectors 42
LED
Com 45
error codes 45
indication 44, 45
power (green) 44

status 44
yellow 45
legal values
AF_AREA_SIZE194
level mode (Trigger_Mode_1)121
look-up table
user-defined71
look-up table (LUT) 71, 188
LUT
data exchange buffer72
example
Gamma71
general 71
loading into camera72
volatile
LUT (advanced register)188
LUT_CTRL
LUT_INFO
LUT_MEM_CTRL
LutNo
LutNo (Field)
Μ

Manual_Inq	48
Marlin cameras	20
Marlin F-033B	
specification	25
Marlin F-046B	
specification	26
Marlin F-080B	
specification	27
Marlin F-145B2	
specification	28
Marlin F-146B	
specification	29
Marlin F-201B	
specification	30
Marlin W270	39
Max. resolution (advanced register)	183
maximum resolution	183
MAX_RESOLUTION	183
MaxResolution (Field)	182
MaxResolution (Register)	183
Max_Value	48
MaxValue	193
memory channels	201

Min. exp. time + offset	129
Min_Value	48
MinValue	
Mirror (advanced register)	
mirror function	
horizontal	80
Mirror image (advanced register)	196
MSB aligned	55
Multi-Shot	134
multi-shot	134, 143
external trigger	134
MVTEC	73

Ν

No DCAM object	45
No FLASH object	
Node_Id	
non-uniform illumination	
NumOfLuts	

OFFSET

ULI	
automatic white balance	61
offset	. 69, 128
800h	69
configuration ROM	151
factors	152
hue	90
initialize register	154
inquiry register video format	
inquiry register video mode	155
saturation	90
setting brightness	69
setting gain	69
OHCI API	
FirePackage	19
One_Push (Field) 60, 65, 6	7, 68, 70
one-push white balance	
One_Push_Inq	48
one-shot	131
Trigger_Mode_15	121, 123
using Trigger_Mode_15	125
values	132
one-shot bit	131
one-shot mode	131
ON_OFF	48

ON_OFF (Field)	60
optical coupler	
opto coupler	
output	
block diagram	50
signals	50
Output configuration register	
output mode	51
ID	52
Output mode (Field)	51
output pin control	52
outputs	50
common vcc	
general	46
registers	51
set by software	
OutVCC	43

Ρ

-
partial scan 20
PI controller
pin control191
PinState (Field)
PinState flag
plus integral controller
Polarity (Field)
power
GND
IEEE-1394 pin assignment
LED 44
Presence_Inq 47
Presence_Inq (Field) 48, 60
programmable mode (Trigger_Mode_15) 121
Programming cable206
programming cable
E 1000666206
PxGA 60
PxGA [®]
R
Readout Ing //8

60
40
45
74

RGB to YUV
formula 90
RGB8 format 90
RS232 43
serial interface206
RxD_RS232 43
S
saturation
offset 90
scan 20
secure image signature (SIS)
advanced registers
definition145
scenarios145
sensor
positioning 38
Sensor position accuracy207
Seq_Length143
sequence
BAYER color pattern 60
commands for generating shading image
75
correction75
deferred mode138
loading a LUT72
modified registers140
of images139
one-push white balance62
OneShot131
sequence control187
correction data75
register187
sequence mode139
cancel143
changes to registers144
example of settings143
flow diagram142
frame rate140
image size140
implemented141
Sequence mode (advanced register)141
serial interface
RS 232206
shaded image 77
shading

correction data7	3
Shading (advanced register)18	9
shading correction	
shading image7	
automatic generation7	
delay 7	
Format_7	
generate	
qeneration	
load into camera7	
load out of camera	
shading images	
shading reference image	
SHDG_CTRL	
SHDG_INFO	
SHDG_MEM_CTRL	
ShowWorkArea (Field)19	
SHUTTER	
	5
shutter time	~
formula	
SHUTTER_MODES12	
Signal to noise ratio (SNR)	
signal to noise separation	1
signal-to noise ratio (SNR)	_
vertical binning 8	
single-shot mode14	3
SIS	_
advanced registers19	
definition14	
scenarios14	
SmartView 1	
SNR	
Soft reset (advanced register)19	6
specification	
Marlin F-033B 2	
Marlin F-046B 2	
Marlin F-080B 2	
Marlin F-145B2 2	
Marlin F-146B 2	
Marlin F-201B 3	0
specifications2	4
spectral transmission	
IR cut filter 4	
Jenofilt 217 4	0

Stack setup 4	5
Stack start 4	5
standard housing 3	8
status LED 4	4
stored settings	
user profile204	4
strobe flash5	
styles 1	7
sub-sampling8	4
sy (sync bit) 54, 5	5
symbols 1	7
sync bit (sy)54, 5	5
synchronization value (sync bit) 5	5
system components 4	0

Т

tag field	55
target grey level	
corresponds to Auto_exposure	173
Target grey level (auto exposure)	66, 69
Target grey level (SmartView)	
corresponds to auto exposure	64
tCode	55
test image	147
b/w cameras	147
Bayer-coded	148
color	148
color cameras	148
configuration register	186
gray bar	147
save	186
Test images (advanced register)	
TEST_IMAGE	186
tg	
Time base (advanced register)	184
time base (Register)	184
time response	
Time stamp	197
time stamp	
Time stamp (advanced register)	197
TIMEBASE	178, 184
timebase	
exposure time	128
MF-033	129
setting	185
trigger delay	48, 126

TimeBase (Field)	
ТРА	
TPA+	42
ТРВ	42
ТРВ+	42
transaction code (tCode)	55
trigger	
bulk	121, 123
control image capture	121
delay	48, 54
edge	49
external	
hardware	. 49, 127
impulse	131
IntEna	53
internal	121, 123
latency time	136
microcontroller	132
one-shot	
sequence mode	139
signal	46
software	134
synchronize	136
Trigger counter	
trigger counter	
Trigger counter (advanced register).	200
trigger delay	
advanced CSR	. 49, 127
advanced register	. 49, 127
off	49
on	
Trigger delay (advanced register)	
Trigger Delay CSR	
trigger function	
Trigger modi	121
trigger overrun	145
trigger shutter	
asynchronous	
TRIGGER_DELAY	
TRIGGER_DELAY_INQUIRY	
Trigger_Delay_Inquiry register	
TRIGGER_MODE	
Trigger_Mode	
Trigger_Mode_0	
Trigger_Mode_0 (edge mode)	121

Trigger_Mode_1121
Trigger_Mode_1 (level mode)121
Trigger_Mode_15121, 123
Trigger_Mode_15 (programmable mode) 121
Trigger_Polarity124
triggers 46
input 46
Trigger_Source124
Trigger_Value124
Tripod adapter 39
Tripod dimensions 39
true partial scan 20

U

U/B_Value (Field)	60
U/V slider range	
UNIT_POSITION_INQ	
UNIT_SIZE_INQ	
user profile	
stored settings	204
user profiles	
error code	202
User profiles (advanced register)	201
user sets	201

V

V/R_Value (Field) 60
valid values
AF_AREA_SIZE194
Vendor unique Features165
Version information (advanced register) .180
Vertical binning 82
vertical binning
SNR 82
video data format
IIDC 1.3 55
Video data payload 55
video format
available bandwidth108
frame rate108
MF-080 99
video Format_7
A0I105
video formats
MF-033 97
MF-046 98

MF-145	100
MF-146	102
MF-201	104
video information	55
video mode	
CUR-V-MODE	170
Format_7	176
inquiry register	155
sample C code	151
video mode 0	111
video mode 2	111
VMode_ERROR_STATUS	45

W

60
62
67
64
63
61, 62
59
59
90
61, 62
60
60
61
60, 62

217