Scope of this document

This document describes triggering basics for Allied Vision USB3 Vision cameras, from best-practice rules to general examples.

Features use in programming

For information on programming with features, see the Vimba Viewer Guide, included in Vimba. See: https://www.alliedvision.com/software.

Trigger signal flow

The following diagram shows the exposure of a frame started by an external signal. High levels show the active state of a signal. Proportions and dependencies are simplified to show the basic signal flow. Signal 1 starts Cycle 1.

![Trigger signal flow diagram](image)

Figure 1: Trigger signal flow

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>External signal</td>
<td>Electrical trigger signal starting the signal flow</td>
</tr>
<tr>
<td>ExposureActive</td>
<td>Exposing a frame</td>
</tr>
<tr>
<td>ReadoutActive</td>
<td>Reading out a frame, high when the image sensor is reading out data</td>
</tr>
<tr>
<td>FrameTriggerWait</td>
<td>Waiting for a trigger</td>
</tr>
<tr>
<td>AcquisitionActive</td>
<td>• Acquiring of frames, needs to be high to start triggering</td>
</tr>
<tr>
<td></td>
<td>• High when the camera image sensor is either exposing, reading out data, or waiting for a trigger</td>
</tr>
</tbody>
</table>

Table 1: Trigger signal flow, legend
Trigger latency

Trigger latency is the time delay between the FrameStart trigger and the start of exposure. Trigger latency consists of:

- Jitter and delay of ExposureStart
- TriggerDelay

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
</table>
| ExposureStart jitter | • Deviation from the average periodical signal time
 • Time range mainly caused by sensor line synchronization |
| ExposureStart delay | • Deviation from the average periodical signal time
 • Time range caused by camera internal timing |
| TriggerDelay | Value set by the user to extend the trigger latency |

Table 2: Trigger latency -> Components

Best practice rules for triggering

- Set the trigger to RisingEdge for fastest possible reaction time.
- Set the trigger pulse width in the supported range.
- Consider that the end of exposure triggers the next readout.
- Make sure the exposure of a frame ends after the readout of the previous frame.
- Start exposure only between the readouts of two lines.
- Consider that ExposureStart delay = readout time – ExposureTime.

Triggering when ReadoutActive is low

Apply FrameStart trigger when ReadoutActive is low. This way, you keep trigger latency (including ExposureStart jitter) short.

Triggering when ReadoutActive is high

For fastest triggering cycle time with simultaneous exposure and readout, apply FrameStart trigger immediately when FrameTriggerWait is high.

Because exposure must always begin at sensor line synchronization, the ExposureStart jitter can be up to 1 line cycle.

Additional information

- For detailed camera control definitions, see your camera’s technical manual:
- For detailed camera control definitions, see USB3 Vision Features Reference at Additional Documents for your USB camera:
Examples

AcquisitionStart trigger and FrameStart trigger

AcquisitionStart description

To acquire images, AcquisitionActive must be high. Even to trigger the start of an acquisition by a pulse through an I/O, you have to issue an AcquisitionStart command.

Figure 2: TriggerMode = Off, software command: AcquisitionStart

Figure 3: TriggerMode = On, software command: AcquisitionStart

AcquisitionStop

AcquisitionStop is mandatory to end acquisition.

With AcquisitionMode = SingleFrame or MultiFrame:

If no AcquisitionStop is signaled, after the selected number of frames has been acquired, the camera internally creates an AcquisitionStop command; this turns AcquisitionActive to low.
AcquisitionStart trigger and FrameStart trigger dependencies

Figure 4 shows the dependencies between AcquisitionStart and FrameStart trigger.

Figure 4: Dependencies of AcquisitionStart and FrameStart
Modes for triggering

The following sections describe in general the main modes for triggering:

• TriggerMode
• AcquisitionMode
• ExposureMode

TriggerSelector

The TriggerSelector examples in this section show triggering with AcquisitionMode = Continuous.

<table>
<thead>
<tr>
<th>AcquisitionMode</th>
<th>TriggerSelector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AcquisitionStart</td>
</tr>
<tr>
<td>Continuous</td>
<td>Off</td>
</tr>
<tr>
<td>Continuous</td>
<td>Off</td>
</tr>
<tr>
<td>Continuous</td>
<td>Off</td>
</tr>
<tr>
<td>Continuous</td>
<td>Off</td>
</tr>
</tbody>
</table>

Table 3: TriggerSelector examples overview

An AcquisitionStart command sets ExposureActive to high. After this, the camera continues exposing with the maximum frame rate allowed. Maximum frame rate depends on factors, such as camera specifications and available bandwidth.
Acquisition without triggering

If no trigger is selected, the `AcquisitionStart` command starts exposure.

```c
AcquisitionMode = Continuous;
TriggerSelector = AcquisitionStart;
   TriggerMode = Off;
TriggerSelector = FrameStart;
   TriggerMode = Off;
AcquisitionStart ();
```

Figure 5: Acquisition without triggering
TriggerSelector = FrameStart

FrameStart triggers the exposure.

AcquisitionMode = Continuous;

TriggerSelector = AcquisitionStart;
TriggerMode = Off;

TriggerSelector = FrameStart;
TriggerMode = On;

AcquisitionStart {};

FrameStart trigger

ExposureActive

ReadoutActive

AcquisitionActive

Figure 6: TriggerSelector = FrameStart trigger
AcquisitionMode

AcquisitionMode = SingleFrame

The AcquisitionStart command triggers the exposure of a single frame. Every frame needs a separate AcquisitionStart command.

```
AcquisitionMode = SingleFrame;
TriggerSelector = AcquisitionStart;
    TriggerMode = Off;
TriggerSelector = FrameStart;
    TriggerMode = Off;
ExposureMode = Timed;
AcquisitionStart ();
AcquisitionStart ();
```

Figure 7: AcquisitionMode = SingleFrame
AcquisitionMode = MultiFrame
AcquisitionStart triggers exposure.
FrameCount sets the number of images.

```
AcquisitionMode = MultiFrame;
FrameCount = 6;

TriggerSelector = AcquisitionStart;
TriggerMode = Off;

TriggerSelector = FrameStart;
TriggerMode = Off;

ExposureMode = Timed;

AcquisitionStart ();
```

Figure 8: AcquisitionMode = MultiFrame
ExposureMode

ExposureMode = Timed

FrameStart triggers exposure.
ExposureTime sets exposure time.

AcquisitionMode = Continuous;
TriggerSelector = AcquisitionStart;
 TriggerMode = Off;

TriggerSelector = FrameStart
 TriggerMode = On;

ExposureMode = Timed;
ExposureTime = 500;

AcquisitionStart();
AcquisitionStop();

FrameStart trigger
ExposureActive
ReadoutActive
AcquisitionActive

Figure 9: ExposureMode = Timed
ExposureMode = TriggerWidth

FrameStart triggers exposure.

The duration of the *FrameStart* trigger sets the exposure time.

AcquisitionMode = Continuous;

TriggerSelector = AcquisitionStart;
 TriggerMode = Off;

TriggerSelector = FrameStart
 TriggerMode = On;

ExposureMode = TriggerWidth;

AcquisitionStart();

FrameStart trigger

ExposureActive

ReadoutActive

AcquisitionActive

Figure 10: ExposureMode = TriggerWidth

ExposureModes Mako U-503B

Mako U-503B provides only *Timed* value for *ExposureMode*.

TriggerWidth and TriggerActivation

If the frame or line *TriggerActivation*[TriggerSelector] is *LevelHigh*, the camera exposes as long as the trigger is high.

If *TriggerActivation*[TriggerSelector] is *LevelLow*, the camera exposes as long as the trigger is low.
Contact
For technical support, please contact support@alliedvision.com.
For comments or suggestions regarding this document, please contact info@alliedvision.com.

Disclaimer
Due to continual product development, technical specifications may be subject to change without notice. All trademarks are acknowledged as property of their respective owners. We are convinced that this information is correct. We acknowledge that it may not be comprehensive. Nevertheless, Allied Vision cannot be held responsible for any damage in equipment or subsequent loss of data or whatsoever in consequence of this document.

Copyright © 2021 Allied Vision Technologies GmbH. All rights reserved.